
大数据融合将解锁物联网真正潜力_数据分析师培训
随着洛杉矶CES大会的落幕,局势渐渐明朗:2015年将成为物联网元年。从牙刷可以安排体检到瑜伽垫可以实时分析你的动作,今年的CES大会上,3000多家企业推出了超过2000件新产品。
对于物联网这个概念我们显然已经不陌生了。实际上,Gartner公司预测物联网设备的数量在2020年将增长到250亿。
由于便捷性的驱动和对曾经无法实现技术的迷恋,消费者将持续补充他们的电子产品仓库。随着联网设备增多,他们将会把目光转向商业,来提高互联性和用户体验。超前的用户体验意味着为这些设备创造出一条新的路——无缝互联。
现在可以编程让咖啡机在特定时间制作好咖啡。咖啡机可以和用户的床垫相连,感知到她起床并发送消息到手机上询问今天想要哪种口味的咖啡,未来还会在所用咖啡豆储存量不足时自动从亚马逊订购。
随着智能设备带来指数型增长的用户数据,企业必须重新思考储存、整理、利用它们的方法。实时处理和分析将成为常态,没有到位的基础去处理结构化和非结构化的数据,将落后于人。那么,IT和市场精英们到底该不该在物联网领域占领先机呢?
同一性是解锁物联网真正潜力的关键
通过尝试将所有数据点的产生从设备回到从用户身份上,企业将能够为用户个人创造出真正个性化定制的体验。这种单个用户身份数据的调和和属性可以让用户的牙刷顺利和她的手机“交流”。
如果没有一个明确的系统适当的来给用户个人记录附加信息,数据只能是碎片式的,本质上是没用的。如果每个设备上获取的数据点都封装在一个独立的库里,用户体验将脱节得越来越严重。
企业保持数据整洁、有序、从连接的第一点到用户身份的附带是最好的方法。这个过程从注册开始。当用户从注册开始,即使是在传统网站注册或是通过社交账户登陆的,用户记录就必须开始。
从这点来说,企业需要记录用户的任何行为。它与用户身份相连接,使设备能够知晓用户偏好并和别的设备进行交流。
例如,如果一个人买了三星手机,他就成了三星生态系统中的一环。如果用户把手机当成智能控制中心来控制智能电视、远程洗衣、通过第三方程序发送文件到无线打印机,用户可以根据第一次登入信息用相同的登录证书来做到这些。
所有数据点都能够聚合和转回用户记录,企业用此来建立唯一的1:1的用户体验。
维护统一数据库
除了确保所有返回的数据点都归于用户记录之外,企业必须确保他们有足够安全的“房子”来存储这些数据。利用动态数据库,超越用户基本属性,使建立精确的客户档案和吸引人的用户体验成为现实,让企业投入巨资创造连接的设备。
一种先进的数据分析软件数据库建立在一个动态模式上,可以很容易以优化的方式地处理大量非结构化的用户数据。当用户确定需要此项业务时,客户数据被自动索引。这些信息在一个有组织、易于浏览的方式中非常有用,使营销人员能够针对用户量身定制,并针对他们行动。
有了系统的整合,组织,大数据分析安全存储和访问客户数据,品牌可以给生活带来更多宏伟的愿景。 随着互联网的不断发展,包括连接设备,它可以帮助工程师了解用户身份的演变,包括支付信息,生物和社会图形数据。通过其核心的身份,物联网才能真正改变我们的日常生活。
毕竟,如果不能共同工作,那数十亿智能设备的目的是什么呢?没有数据融合,物联网只是纸上谈兵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23