
大数据时代的数据开放与安全_数据分析师
据Gartner统计,随着大数据技术的成熟,全球超过60%的运营商已开始投资大数据,在当今大数据时代,运营商纷纷借助大数据技术实现从网络资产运营到数据资产经营的转型,数据开放为实现这一转型的关键举措,随着数据开放逐步开展,如何保障数据开放带来的安全与隐私问题也日益呈现,为此如何在大数据时代既能通过数据开放获取商业利益,又能保障数据开放中的数据安全与隐私,是运营商目前迫切需要应对的挑战。
1 数据开放是大数据时代的趋势
运营商发展大数据将会经历三个阶段:从自发的利用内生数据解决问题、到基于数据的应用商业化、再到进入数据共享交易时代,现大部分运营商大数据发展处在数据的商业化阶段,数据开放是实现数据商业化最主要方式,运营商目前主要进行两大类数据开放:
基于群体的数据开放:运营商提供针对区域用户特征的统计分析服务报告(比如基于地理位置栅格的人流信息等),可用于支撑政府规划和一些具备市场调研特征的商业用途,比如帮助提供商家基于区域人流的店面选址、与咨询机构合作等提供咨询报告等。
基于个体的数据开放:运营商提供针对用户行为偏好的用户画像分析服务,支撑运营商内部以提升用户体验为目标的运营商业务和一些需要精准判断目标人群的商业用途,比如与广告公司合作提供用户所需要的营销广告、针对用户对于旅游/汽车/航空等垂直行业的需求偏好提供有针对性的营销。
2 数据开放中数据安全与隐私挑战
大数据技术推动巨大创新,运营商在基于数据资产的数据开放获得收益的同时,也产生了新的隐私问题,其影响远远超出了当下备受关注的移动互联网线上广告问题,这些影响不仅需要一个更具广泛性的国家法规,数据使用获得用户的许可,并对数据进行审核;在大数据时代的的数据开放中,数据使用和重复使用包括与第三方的合作,将会使安全与隐私得到更高的挑战,需要建立数据的使用和管理机制,并对数据更好的使用进行授权,以使人们能够从其个人信息的开放与使用中获利,当然前提是个人的信息安全,敏感信息得到保护。
作为提供数据服务的运营商为了更好的开展数据开放获取长期的商业利益,需要提高数据服务的透明度,让消费者有权更清楚的知晓,个人的哪些数据被使用,使用的数据作为哪种商业用途及其时效性,并明确对使用的数据提供安全保护,运营商需要提供通道,实现用户可以对其个人数据要有充分的控制权,可以随时查阅、取消对个人数据的使用和处理。
全球包括欧盟、美国等都在积极进行数据安全与隐私的规范制定与完善,数据开放的安全与隐私保护需要参考全球法规与业界通用隐私安全设计和个人数据隐私保护指导原则,对敏感信息进行技术保护,同时对个人数据的访问控制、加密存储、安全传输等提供安全保护机制。
3 华为Open Data Bus解决方案
从技术角度来看运营商数据开放过程,需要有一个安全通道确保运营商大数据能力与数据用户应用的数据交易是安全、可靠且合规的。
华为Open Data Bus解决方案继承华为在电信领域可靠性设计和安全设计的丰富经验积累,依靠专业法律咨询团队对全球100多个国家和地区法律法规的理解,采用合适的措施(例如授权,泛化,加密,安全及隐私保护策略适配), 使得用户数据和隐私能够得到充分保护。
3.1 数据开放管理
华为认为在运营商以数据开放为目的的数据使用过程中获得用户授权是第一位的;并在用户数据"被开放"的过程对用户来说是透明的,即用户可以简单的获取与自己相关的数据的来源与去向;可以通过简单的操作收回授权,甚至可以自助选择与自己相关哪一类数据不允许被使用。这种是使用户能够感知自身数据流向的管理策略,除了可以使运营商获得价值数据,也可以提高用户对自身数据安全的感知程度。Huawei Open Data Bus 包含数据开放管理模块,为运营商提供便利的用户数据开放管理工具,向数以千万计的终端用户提供友好操作界面,方便终端用户对自身数据进行管理。
3.2 开放参考模型
开放参考模型的目的是将复杂的法律法规条文变成简单可配的元数据标签,为每一条数据的开放提供一个仲裁依据,提供数据可视化端到端的数据隐私策略支撑。作为一个服务全球100多家运营商的provider,华为Open Data Bus隐私参考模型也必须是国际化的。通过对全球多个国家和地区法律法规分析,把运营商大数据的常见的数据类型进行分级分层,对每个层面的数据进行定义,为数据的开放和使用提供标准的隐私法律法规参考。通过灵活的安全及隐私保护策略适配,可以满足不同国家的政策要求及不同客户的业务需求。
3.3 数据使用过程的安全与因素
数据开放将运营商从封闭的电信网络强行带入了自由开放的英特网,更多的威胁来源和攻击方式使得在数据开放在没有可靠的安全保证机制下寸步难行。华为Open Data Bus通过端到端的数据安全和隐私保护措施,例如认证授权,安全传输,数据加密,匿名化(包括泛化和随机化),假名化, 数据使用审计,数据安全删除等,使得Open Data Bus在IT领域同样驾轻就熟。
展望:大数据安全与隐私解决方案的趋势
现阶段运营商主要是利用自有的数据资产实现数据开放,凭借运营商公信力与庞大的数据资产优势,为了更好的使用数据资产提供服务,未来运营商将纳入第三方数据并构建数据集市生态圈。在数据集市生态圈中如何实现多个大数据分析源的共享交易与安全隐私保护,将是大数据安全与隐私解决方案需要面临的新挑战。
随着大数据数据开放的商业模式越来越成熟,各国将会进一步规范数据安全与隐私保护,同时各国大数据开放的形态呈现多样化,如何快速的匹配各国政府的法规要求并快速响应数据开放的商业诉求,将是大数据安全与隐私解决方案需要面临的另一新挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09