京公网安备 11010802034615号
经营许可证编号:京B2-20210330
引入大数据是关键_数据分析师培训
真正有用的医疗信息化系统不单单是贮存医疗档案,否则它就是一套“死系统”。业内人士建议引入大数据比对分析,从而让这套系统“复活”{CDA数据分析师培训}。举个例子,利用大数据进行挖掘后,医疗信息系统会提醒医生开处方时药物的过敏反应,或者会提供医疗措施的建议,告知医生患者需要注射疫苗,或根据医疗文献提醒医生患者最近的症状并不支持刚预约的成像检查。不仅如此,医疗信息系统还可用于人群监测,如对将会流行的传染病的早期症状加以监控,或对新上市的处方药的副作用加以关注。
随着我国区域卫生信息化的快速发展,电子病历的应用和共享将大行其道。如何存储快速增长的、海量的数据,如何对大数据进行分析处理,挖掘价值?这将成为医疗卫生信息化面临的挑战。
中国工程院院士邬贺铨介绍,所谓大数据是指在允许的时间里,无法用常规软件对数据进行抓取、管理和处理而产生的数据集合。医疗数据大体可以分为3种:结构化数据、半结构化数据和非结构化数据。其中,大量的数据属于业务过程中产生的文档等非结构化数据。
卫宁软件一名高管透露,随着信息化的推进,包括电子病历在内的各类健康数据,已经呈现出爆发性增长的态势,数据量是过去的数十倍。这一说法得到上海市卫生局一位负责人的印证,他告诉中国证券报记者,上海市正推进健康信息网工程建设,第一阶段联合了上海市六个区和34家三甲医院,半年时间,数据量已经超过12亿笔,每天的入库量是800万笔,每天以TB级的数据量增长。
这些数据包含大量的非结构化的数据,例如心电图、B超、CT、MR、CR、DR和DSA等。临床的大量影像文件是医生诊断的重要依据。医疗信息化需要将数据转化为宝贵的资源,有效地应用结构性和非结构性数据,从而创造最大价值。
例如,常规的电子病历系统并不包含数据分析功能,其核心部分,还只是患者个体就诊情况的记录。比如说电子病历并不能捕获关节手术接受者的疼痛和康复详情,但如果能够将相关的术后指标存入数据库,就可以帮助其他希望接受手术的患者了解自己可能获得的疗效。显然,通过数据和案例分析为患者确定个性化的医疗方案,比通过专项研究来达到这一目标更为快捷和经济。
邬贺铨介绍,大数据引入医疗信息化领域的第一个应用是临床诊断。“这首先体现在对病人的数据分析。”他说,精准地分析病人的体征、治疗费用和疗效数据,可避免过度治疗、避免副作用较为明显的治疗。通过进一步比较各种治疗措施的效果,医生可更好地确定临床最有效、效益最好的治疗方法。
其次体现在临床决策系统。通过将医生处方和医疗专家库医学指导比较,系统可提醒医生避免出错,如药品不良反应、过度使用抗生素等,帮助医生降低医疗风险。“美国的一个儿科医院通过使用临床决策支持系统,两个月内减少了40%的药品不良反应。”他举例说。
最后是可以让临床医疗数据更加透明。邬贺铨介绍,美国疾控中心公布的医疗数据,可以帮助病人作出更明智的决定,从而选择性价比更高的治疗方案。“通过告诉病人多种不同的医疗方案,病人可以自己选择治疗方案。美国还公开发布不同医院的医疗质量和绩效数据,这有助于督促医院改进医疗服务质量。”邬贺铨评价道,“仅仅这个医疗临床决策系统,对美国来讲,一年就能减少1650亿美元医疗支出。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20