京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用必要条件:数据真实和准确
《哈佛商业评论》最新一期的封面上,一位勇士正挥舞着长鞭,试图驾驭大数据这匹“烈马”。的确,大数据的重要性已是公认,可你有没有想过真正想获取大数据价值的人能以何为鞭?仅有鞭在手是否足矣?
“IBM对大数据有自己独到的观点。”IBM软件集团大中华区业务分析洞察及智慧地球解决方案总经理卜晓军在主题为“大数据·大洞察·大未来”的年度大数据战略发布会上的发言举重若轻。的确,IBM严谨的智慧分析洞察方法论、完善的大数据平台解决方案以及广泛深刻的行业落地实践,让IBM有底气宣布即将驯服大数据,IBM的大数据平台或许就是企业正在苦苦寻找的“长鞭”和“缰绳”。
对付大数据4个V
大数据的3V特点(Volume、Velocity、Variety)已无需赘言——“过去两年里所产生的数据量占到人类有史以来所积累的数据总量的90%”,“每秒钟有500万笔交易发生,每天有5亿个通话记录产生”,“80%的数据增长来源于图片、视频和文档”。这就意味着在应对大数据时,要集成和管理高容量、即时、多类型和分散来源的数据。
“这一切只是开始。”卜晓军补充道,“3V只是对大数据最基本特征的归纳,实际上,大数据向外延伸的涵义很丰富。”IBM就归纳总结了第4个V——Veracity(真实和准确),为什么第4个V足以与前3个V相提并论?“这是因为,只有真实而准确的数据才能让对数据的管控和治理真正有意义。”随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限性被打破,企业愈发需要有效的信息治理以确保其真实性及安全性。
如何充分应对大数据的4V特性,成为了想获取大数据深层价值者面前的一道难题。基于“3A5步”动态路线图的大数据战略再次体现了IBM完整的软件体系架构和综合能力。
“单独谈大数据没有意义,正如认为Hadoop足以解决大数据所有问题一样过于片面。”IBM软件集团大中华区信息管理软件总经理卢伟权强调,“大数据应该渗透到企业的IT架构中,这就要求大数据平台具备在信息原有的形式上进行进一步的分析、使所有的数据具有可视性并被有效用来分析、为新的分析应用开发更加有效的环境、优化与合理分配工作量、安全与治理等能力,兼容企业级的可用性、管理性、安全性和集成性。”
Hadoop缺乏数据管理的能力,IBM将Hadoop整合到大数据平台中并结合已有的产品,由此以四大核心能力Hadoop系统、流计算、数据仓库和信息整合与治理为支点提供端到端的大数据解决方案。
卢伟权总结道:“IBM将数据库领域里多年积累的经验,和对用户需求的高度考量融合到大数据平台中,通过‘增强’的理念把大数据解决方案有机整合到客户现有的数据平台上,保护客户现有的投资,在不摈弃传统数据仓库的前提下,通过信息整合和治理等工具,为客户创造效率和成本的最佳平衡。”
落脚点是行业应用
不落实到行业,不出示行业应用,人们对大数据的感知仍然会停留在“它仅仅是一个技术趋势”的肤浅层面。只有让大数据成为新的解决业务问题的手段,才能打破大数据怀疑论者的疑虑,才能说明大数据可用——正如《哈佛商业评论》英文版总编辑阿迪·伊格内休斯所言,“大数据就在那里,关键看它如何为你的公司所用”。
“端到端的总体技术,包括信息治理和集成、大数据管理、实时分析,最后的落脚点是行业应用。”IBM中国开发中心信息管理首席架构师及大数据架构师陈奇说明技术服务于商业是终极追求。
行业应用场景是IBM大数据策略最有力的说客,在数个主要行业中应对大数据的相关场景和实践经验的分享让其优势不言自明。
伴随着制造业演变为“供应链核心模式”,IBM软件集团制造事业群总经理萧丁瑞希望制造业企业在IBM的帮助下实现供应链的可见性,以快速有效的方式处理供应链环节中的数据,弱化需求与供给之间的波动传导,达到产销协同。
IBM软件集团大中华区架构师总经理林旭认为,随着竞争不断激化,实时数据处理和客户行为预测成为运营商抢占的高地。IBM有能力帮助电信公司整理分散数据,管理动态数据,实时获取用户行为分析,增强客服效率和业务推送精准度。
“在金融行业中,客户数据是最珍贵的,这就决定了大数据平台必须是对传统数据仓库的补充和增强。”IBM软件集团大中华区银行业解决方案高级顾问陈剑指出,“此外,金融行业除了对于用户行为预测和实时处理等需求之外,还面临着风险和欺诈的巨大挑战。”IBM大处理解决方案可建立风险模型,通过实时匹配交易行为模型,对风险和欺诈进行监控,并补充和增强原有传统数据仓库中客户档案和信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12