
普通人与大数据(2)_数据分析师
大数据给企业和商业带来了巨大的价值,比如在互联网金融领域降低了不良贷款率,减少了交易成本。谷歌利用大数据预测季节性流感的爆发和传播。AT&T将用户在WiFi网络中的地理位置、网络浏览历史记录以及使用的应用等数据销售给广告客户。当用户距离商家很近时,就有可能收到该商家提供的折扣很大的电子优惠券,等等。
但是,作为大数据的产生者,广大公众能够从大数据的发展中获得什么呢?大数据的发展关乎广大公众的切实利益,举例来说,专家们认为利用大数据可以有效地实现“智慧医疗”,为全面的个人健康管理进行服务;个人可以方便获取医院的就诊信息、检查数据、医疗影像等,以及个人健康的历史数据;为慢性病患者提供远程数据分析和服务;辅助临床诊断和用药决策;为公共卫生机构提供及时的统计分析;以及为药品研发、治疗方案设计提供数据分析。随着大数据的发展,广大公众的生活也将变得更加便利。
我们该怎么做
刚刚买完房子的你,突然收到很多房产开发商或者代理商的电话和短信,这时你肯定感觉自己的信息被泄露了。对于大数据时代来说,广大公众会更加关注自己的隐私,而我们应该如何保护自己的隐私呢?
专家们认为,大数据时代关注的是用户的特征,而不是具体的信息。比如说,通过大数据,希望知道用户是一个处于20—30岁年龄段生育过子女并接受过高等教育的女性,而不是想知道她姓甚名谁,今年多大,有几个小孩。还有一点,就是大数据的采集和处理主要是由一些大型的公司在做,它们有自己严格的规范和流程,以确保信息安全。
专家们也给出了一些具体的建议:首先,国家相关的法律也对个人隐私的保护问题进行了相应的规定和约束,2013年1月份全国人大通过了关于个人用户隐私保护的决定,同时工信部根据全国人大的决定,出台了关于互联网和电信网个人信息保护的条例以保护用户的隐私,这些都对个人隐私的保护具有一定的作用。其次,企业要履行自己的社会责任,通过特定的技术手段对用户信息进行不可逆的处理。一旦发生用户信息外泄,企业要承担相应的责任。最后,用户也需要注意保护自己的隐私。一些信息泄露事件的出现,也与广大用户本身对个人信息的保护意识不足有一定关系。所以,在大数据时代,迫切需要向用户开展加强自身信息保护意识的教育,也就是安全上网的知识普及和教育。
不论你接受还是不接受它,大数据就在那里,不近不远。大数据已经在我们的生活当中,给我们的生活带来了巨大影响。一方面,我们要加强个人隐私的保护,另一方面,也要充分适应大数据给我们带来的变革,享受它给每个人的生活带来的便利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03