
大数据不仅是新科技,还是种革命性的概念
当世界卫生组织(WHO)在2014年10月公布伊波拉病毒(Ebola)在全球有8,997个感染病例,并夺走4,493条人命的警讯时,加拿大的Bio Diaspora公司运用地理资讯系统(GIS)结合大数据(big data),发布了一张动态全球病毒地图,预测下一个可能引爆伊波拉病毒的地区。
Bio Diaspora分析全球航班资讯、人口移动、温度、湿度变化等资讯,建立模型,找出下一个可能爆发感染的传染途径。就像2008年Google推出流感预测趋势(Google Flu Trends),透过分析使用者在各地区搜寻流感相关的关键字,来预测流感会爆发的地区。这些帮助人类“未卜先知”的工程,就是大数据的魅力。
与其说大数据是新科技,更正确地说,它是种革命性的概念。随着数位化、网络化,数据累积的速度超乎想像。举例来说,在Facebook上每10秒有 5,000多万则以上贴文、Apple Store每分鐘有5万个App被下载、Google每分鐘有400万笔关键字搜寻,这些惊人数字的背后,隐藏了巨大的商机、预测性以及决策的影响力。
根据国际数据资讯(IDC)预测,大数据技术与服务市场的年复合成长率为31.8%,市场规模至2016年将达到238亿美元(约新台币7,500亿元)。随着大数据成为显学,人力市场对相关人才的需求强烈,IT研究及顾问公司Gartner指出,全球至2015年因大数据所产生的IT技术职务,将有 440万个。麦肯锡(McKinsey)更预测,至2018年,单在美国就有14~18万的专业数据分析师职务需求量。
让数据个性化,推动服务升级
事实上,每个人随时随地都在被搜集数据。只要透过有系统地整理、运算与分析,就能解读顾客在想什么、需要什么,这些资讯将成为洞察使用者的最佳线索。
例如,澳洲的老牌酵母咸味酱Vegemite在2009年销售量大幅下滑,为了重新掌握消费者,委託IBM进行数据调查分析,包括部落格、论坛、网络新闻等等,总共蒐集了超过30种以上语言、50万笔数据,从中发现消费者对酱料的创新用法。于是Vegemite发动新的社群行销活动,让市佔率起死回升。这就是大数据的魔力,难怪美国政府将其定义为“未来的新石油”。
各行各业因大数据应用而成功预测结果、或力挽狂澜的案例不胜枚举。因成功切入市场而声名大噪,功典资讯总经理夏雨农分析,大数据是种“服务升级”,透过“个性化”数据,让塬始数据产生意义,再藉此赢得商机。以往空有数据,却无法区分“杂音”与“关键数据”,往往出现企业满手好牌却胡乱出招的状况。
目标是应用大数据的核心,例如是针对顶级客户推出更高单价商品、还是扩大客群与市佔率,这两个目标所设定的数据分析与解读面向就非常不同。
21世纪最性感的职业
至于因应大数据潮流所造就的新职种中,最具代表性的,莫过于数据科学家(data scientist),能透过电脑演算分析数据、解读意义,难怪《哈佛商业评论》(Harvard Business Review)将它称为“21世纪最性感的职业”。
而进入这一行,需要哪些能力?需具备统计学、数学、电脑演算程式技能。另外,因为数据来自企业各部门,更要有横向跨部门索求数据的沟通力,汇整数据的整合力,对于数据的好奇与洞察力。
毕竟,大数据的价值不在数据本身,而是如何从巨量数据中萃取出洞见。谁有这样的本领,谁就是当红炸子鸡!
Hot Job!
★数据科学家:
具备统计学、数学等专业,能将大量资讯运用电脑演算,转换成具有商业价值的数据,并具备优秀的沟通力,能分析、解释数据,影响企业决策。
★数据视觉化分析师:
将大量数据经过演算、建立预测模型, 再透过如Tableau、QlikView、Spotfire等工具,进行视觉化转换,强化数据的易读性。
★商业智慧分析师:
具备Hadoop、Hive及HBase等软体使用经验,能分析企业数据仓储的各种不同类型数据,从中洞察客户行为、市场趋势,进而拟定策略。
★数据管理师:
企业内所有数据的“进”与“出”,都需要经过他认证与管理。也必须确保数据的安全性,甚至具备数据备援的专业技能。
★数据工程师:
需懂数据库、数据结构、自然语言处理、数据採矿、数据模型等技术,协助建构大数据的数据平台架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10