京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”营利的潜在风险_数据分析师
据美国《科学美国人》网站报道,在过去的几年中,“大数据”吸引了越来越多的关注。“大数据”逐渐成为一种产业,其通过“加工”来实现数据的增值,并试图带来一场科学领域的革命,以帮助人们创造一个更加美好的世界。不过,在“大数据”光鲜的背后,有着众多因混乱和烦杂而引起的大肆宣传,如二十世纪八九十年代的众多口号,令我们记忆犹新。自此,建立在强大的计算机软件和高等数学计算之上的“大数据”方式,逐渐取代了传统的科学方法。
数据收集、计算能力和搜索程序上的进步,为语言识别、语言翻译等领域带来了技术支撑。因此,人们对“大数据”的热情与日俱增。但是,“大数据”也可能会对科学形成伤害。因为它会诱使年轻人远离科学真理,并进而驱逐私利。
神经科学领域的一名博士后Fred,在进行研究的时候通常要处理大量的数据。在读完John Horgan教授的文献评论后,Fred提出了自己的观点:人们对“大数据”的热爱,会加剧科学领域的困境。Fred说:“几年前,神经科学领域较为出色的研究生都成为了教授,而稍微差点的研究生都向商业领域发展。但我认为,人才从科学界流失到商界,将成为2014年的科学新闻。”的确,科学界的人才流失将成为一个大趋势。这是因为,科学界并不会因为研究者开发出了新型优质的软件,而给予其大量的奖金,这也是科学界需要反思的地方。
除此之外,学术界和商界对研究质量的关注程度不同。在学术界,期刊杂志很关注那些研究成果,却并不在意这些结果是否是真实的。但在商界,企业都非常关注数据的真实性,这就为研究人员提供了一个鼓舞人心的工作环境。在商界,研究者可以花大量时间来编写代码和分析数据。而在学术界,教授们不得不用大量的时间来申请项目和回复邮件。
华盛顿大学的天体物理学博士Jake VanderPlas称,“大数据”应该成为科学领域的未来。他认为,在学术领域,有效的数据处理方式应该取代古典的研究模式。从粒子物理学到生物化学等领域,数据越来越成为一种有力的驱动力。VanderPlas表明,很多科研成果之所以变得越来越不可靠,一部分原因在于它们依赖于较差的书写和记录软件。如果擅长数据分析的研究者们能分享他们的方法,那么就能提升“危机的非再生性”。
但目前的问题是,学术界对数据分析人才的重视度要远远低于商界。当学术界还在慢步适应时,商界已经大力吸纳和奖励这些人才了。而结果显然是,出色的研究人员发现自己在学术界已无立足之地,所以都开始转向财大气粗的营利行业了。
“商界只希望知道数据的真实性”之类的言论,是滑稽和可笑的。因为对于商界,兜售产品胜于真理。但就像Fred所指出的,人们必须明确“营销”与“分析”之间的区别。当企业想把产品推销给消费者的时候,其营销手段显然不会是真理阐述。但当焦点转向企业的内部分析团队时,真理是极为重要的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20