京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代轻易获取知识的利弊_大数据培训
长期以来,人们学习和掌握知识,要么是老师的言传身授,要么是阅读书籍报刊,尤其是来自经典书籍上的知识,很多人对此深信不疑。然而进入网络大数据时代之后,海量的知识顿时如潮水涌现在眼前,令人眼花缭乱。到底如何判断哪些是真知识,并且是有用的知识,现在成了一个难题。美国哈佛大学伯克曼互联网与社会中心的资深研究员戴维·温伯格新著《知识的边界》(中文版译者胡泳、高美,山西人民出版社出版),围绕大数据时代的知识等一系列问题展开了深层次的探讨和反思。
书籍报刊中的知识凝聚着专业人士的智慧,更具价值
本书中,温伯格对于大数据时代的知识进行了不同层面、不同维度的分析和梳理。他认为,印刷时代的知识是静态、单向度、线性的传播方式,而大数据时代的知识则恰恰相反。美国云计算之父马克·贝尼奥夫认为,大数据时代的知识具有社交性、流动性、开放性的特征。而温伯格则在书中一语中的:“大数据时代的知识没有边界、也没有形状。”
大数据时代的知识是非线性的,可以自由组合、切割,处于一种游离状态。有点“召之即来,来之可取”的意味。大数据时代的知识,如同一张无限扩展的大网,将人类所有知识“一网打尽”。从客观上看,大数据时代的知识学习,确实有其便捷性,这是不争的事实。在没有建立互联网数据库之前,学者们从事学术研究,必须到图书馆查阅一本本书刊资料,既费时又费力。现如今,有了一台连接网络学术数据库的电脑,只要输入关键词,无数近似文献就会“排队”以供遴选。对于作家而言,大数据时代的文学创作,再也不必手持放大镜,一页页地翻阅字号奇小无比的工具书,而在词海的数据库中轻松检索,轻而易举就能获取相近或相反的字、词、句。
另一方面,大数据时代的各种知识,在网站、博客、微博、微信等新媒体中四处传播。而有些知识,未必就是真正的知识,可能是精神中的杂音、噪音,污染知识环境,侵蚀着人们的心灵健康。反而书籍报刊中的知识传播,经过了层层把关,凝聚着无数专业人士的智慧,更具价值。由于大数据时代的知识真假难辨,有的人感到迷惘,乃至一口认定或否定其存在的价值。事实上,作为现代人,使用网络已经成为一种重要的学习和工作手段,刻意逃避不是明智之举。笔者认为,任何一个人在大数据新媒体平台发表文章、表达观点,都应具备高度的社会责任感,理性地阐发真知灼见。倘若只是个人情绪的偏激宣泄,大数据时代的知识在未来命运如何,谁都无法预料。
不管处于什么时代,知识需要花费苦功钻研
这里不得不提,大数据时代的知识便捷性只是相对而言。假如高度依赖网络数据进行学术研究或者文学创作,笔者有着隐隐的担忧:因为学者、作家使用数据库后,省略了在稿纸上的“各种比划”,思考中的各种揣摩、猜疑和最初的灵感火花,无法原汁原味地留存。众所周知,学术研究或者文学创作过程中那些潦草、凌乱的文稿笔迹,是知识的半成品,具备极高的研究价值。大数据时代将大脑思索的过程省略,轻而易举地抹掉,应该引起足够的关注。
大数据时代的知识仅仅是一种资源,好比家中存放成百上千的书籍,如果不去研读,知识和人依然无关。不管处于怎样的一种时代,知识需要人们花费苦功钻研,否则再多的知识也无意义。另外,现在不少人,凡是有不懂的问题,习惯性地上网搜索,不作任何甄别地将网上的知识和答案奉为宝典。长此以往,久而久之会使大脑变得懒惰,思维变得迟钝。大数据时代的知识,究竟是令人变得聪明还是愚笨?
《知识的边界》一书的魅力,在于它所呈现的思辨层面的丰富性,以及对知识本身的学习、生产、传播、知识内部要素以及知识的外部影响,进行层层深入、环环相扣的论述。在很多看上去不是问题的问题追问中,温伯格表现出深厚的知识思辨能力,这是极为难得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12