
大数据时代轻易获取知识的利弊_大数据培训
长期以来,人们学习和掌握知识,要么是老师的言传身授,要么是阅读书籍报刊,尤其是来自经典书籍上的知识,很多人对此深信不疑。然而进入网络大数据时代之后,海量的知识顿时如潮水涌现在眼前,令人眼花缭乱。到底如何判断哪些是真知识,并且是有用的知识,现在成了一个难题。美国哈佛大学伯克曼互联网与社会中心的资深研究员戴维·温伯格新著《知识的边界》(中文版译者胡泳、高美,山西人民出版社出版),围绕大数据时代的知识等一系列问题展开了深层次的探讨和反思。
书籍报刊中的知识凝聚着专业人士的智慧,更具价值
本书中,温伯格对于大数据时代的知识进行了不同层面、不同维度的分析和梳理。他认为,印刷时代的知识是静态、单向度、线性的传播方式,而大数据时代的知识则恰恰相反。美国云计算之父马克·贝尼奥夫认为,大数据时代的知识具有社交性、流动性、开放性的特征。而温伯格则在书中一语中的:“大数据时代的知识没有边界、也没有形状。”
大数据时代的知识是非线性的,可以自由组合、切割,处于一种游离状态。有点“召之即来,来之可取”的意味。大数据时代的知识,如同一张无限扩展的大网,将人类所有知识“一网打尽”。从客观上看,大数据时代的知识学习,确实有其便捷性,这是不争的事实。在没有建立互联网数据库之前,学者们从事学术研究,必须到图书馆查阅一本本书刊资料,既费时又费力。现如今,有了一台连接网络学术数据库的电脑,只要输入关键词,无数近似文献就会“排队”以供遴选。对于作家而言,大数据时代的文学创作,再也不必手持放大镜,一页页地翻阅字号奇小无比的工具书,而在词海的数据库中轻松检索,轻而易举就能获取相近或相反的字、词、句。
另一方面,大数据时代的各种知识,在网站、博客、微博、微信等新媒体中四处传播。而有些知识,未必就是真正的知识,可能是精神中的杂音、噪音,污染知识环境,侵蚀着人们的心灵健康。反而书籍报刊中的知识传播,经过了层层把关,凝聚着无数专业人士的智慧,更具价值。由于大数据时代的知识真假难辨,有的人感到迷惘,乃至一口认定或否定其存在的价值。事实上,作为现代人,使用网络已经成为一种重要的学习和工作手段,刻意逃避不是明智之举。笔者认为,任何一个人在大数据新媒体平台发表文章、表达观点,都应具备高度的社会责任感,理性地阐发真知灼见。倘若只是个人情绪的偏激宣泄,大数据时代的知识在未来命运如何,谁都无法预料。
不管处于什么时代,知识需要花费苦功钻研
这里不得不提,大数据时代的知识便捷性只是相对而言。假如高度依赖网络数据进行学术研究或者文学创作,笔者有着隐隐的担忧:因为学者、作家使用数据库后,省略了在稿纸上的“各种比划”,思考中的各种揣摩、猜疑和最初的灵感火花,无法原汁原味地留存。众所周知,学术研究或者文学创作过程中那些潦草、凌乱的文稿笔迹,是知识的半成品,具备极高的研究价值。大数据时代将大脑思索的过程省略,轻而易举地抹掉,应该引起足够的关注。
大数据时代的知识仅仅是一种资源,好比家中存放成百上千的书籍,如果不去研读,知识和人依然无关。不管处于怎样的一种时代,知识需要人们花费苦功钻研,否则再多的知识也无意义。另外,现在不少人,凡是有不懂的问题,习惯性地上网搜索,不作任何甄别地将网上的知识和答案奉为宝典。长此以往,久而久之会使大脑变得懒惰,思维变得迟钝。大数据时代的知识,究竟是令人变得聪明还是愚笨?
《知识的边界》一书的魅力,在于它所呈现的思辨层面的丰富性,以及对知识本身的学习、生产、传播、知识内部要素以及知识的外部影响,进行层层深入、环环相扣的论述。在很多看上去不是问题的问题追问中,温伯格表现出深厚的知识思辨能力,这是极为难得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10