京公网安备 11010802034615号
经营许可证编号:京B2-20210330
深度学习算法的几个难点_数据分析师培训
1、局部最优问题。
深度学习算法的目标函数,几乎全都是非凸的。而目前寻找最优解的方法,都是基于梯度下降的。稍微有点背景知识的人都知道,梯度下降方法是解决不了非凸问题的。因此,如果找到最优解,将是深度学习领域,非常值得研究的课题。
andrew在google的工作,也就是那只猫,其实训练过程是让人很费解的。为了缩短训练时间,项目组采用了分布式训练的方式。采用了1000台计算机,在不同的计算机上存储不同的训练数据,不同的训练服务器通过参数服务器进行参数的交换。{CDA数据分析师培训}训练过程开始后,所有的训练计算机从参数服务器更新当前参数,然后利用当前参数以及本机器上的训练数据,计算得到当前的梯度,通过贪婪式方法,训练到不能再训练为止,然后将参数的更新量提交给服务器,再获取新的参数进行更新。
在这个过程中,出现了不同机器在同步时间上的一个大问题。具体阐述如下:梯度下降这种方法,在计算梯度的时候,一定要知道当前参数的具体值,梯度是针对某一个具体的参数值才有意义的。但是,由于在这个系统中,计算机非常多,当计算机A从服务器上获得参数值后,完成梯度的计算得到步进量的时候,可能在它提交结果之前,计算机B已经修改了参数服务器上的参数了。也就是说,A所得到的步进量,并不是针对当前的参数值的。
论文中,作者注意到了这个问题,但是故意不去理会,结果训练结果居然不错。作者的解释是:这是一种歪打正着的现象。
为什么能够歪打正着呢?有可能是这样的:非凸问题,本来就不是梯度下降法能够解决的。如果不存在同步难题,那么随着训练的深入,结果肯定会收敛到某一个局部最优解上面去。而现在这种同步问题,恰好能够有助于跳出局部最优解。因此最终的训练结果还算不错。
作者并没有证明,这种方式,对于寻找全局最优一定是有帮助的。对于最终的结果是否一定是经验最优的,也没有证明。因此我感觉,深度学习里面,这种超高维参数的最优结果的寻优,是一个很值得深入研究的问题。它对于最终的效果也确实影响很大。
2、内存消耗巨大,计算复杂。
内存消耗巨大和计算复杂体现在两个方面。(1)训练过程。(2)检测过程。
这两个过程的计算复杂,根本原因都是庞大的参数规模造成的。比如google的这个项目,每一个位置都用到了8个模版,每一个像素,这8个模版都是不同的,因此导致最后的模版总数很大,所以训练和检测都很慢。当然,这种模版的设计法,让人不好理解,为什么不同的像素位置,模版完全不同。我还是支持以前的卷积神经网络里面的思想,不同位置的模版都是一样的,但没一个位置,模版数量就远不止8个了。这样的好处是,内存空间中,总的模板数下降了;但缺点是,计算更复杂了。
因此,如果能够找到一个好的方法,能够有效的较低计算复杂度,将是很有意义的。(比如某个邻域内如果方差极小,其实根本就没必要计算了,直接赋0.)
3、人脑机理还有很多没用上。
深度学习模拟的是人脑的其中一个很小的方面,就是:深度结构,以及稀疏性。
但事实上,人脑是相当复杂滴。关于视觉注意机制、多分辨率特性、联想、心理暗示等功能,目前根本就没有太多的模拟。所以神经解剖学对于人工智能的影响应该是蛮大的。将来要想掀起机器智能的另一个研究高潮,估计还得继续借鉴神经解剖学。
4、人为设计模版的可行性。
一直在想,为什么第一层用于检测角点和边缘这种简单特征的模版,一定需要通过无监督训练得到,如果人为实现模拟的话,能否也得到较为理想的结果呢?
从神经解剖学的成果上来看,人脑的v1区和v2区,神经细胞确实是按照规律排列的。而且都是可以人为设计的。而且,一个让人怀疑的地方就是,v1区和v2区的神经细胞,是先天发育好的,还是后天训练出来的?如果是先天的,那就是说,这种模版是可以人为设计的。
5、代价函数的设计方法。
代价函数的设计,在初学者看来,是很奇怪的。代价函数的设计,直接影响到最终的模版训练结果,可以说是深度学习中最核心的模块。
从目前已经发表的论文来看,一是考虑重构误差,二是加入某种惩罚项。惩罚项的设计有多种模式,有考虑一阶范式的,有考虑二阶范式的,各种设计可谓千奇百怪。有博文上讲到,惩罚项的作用是为了防止过拟合,但也有博文的观点是,惩罚项是为了保证稀疏性。(感觉过拟合与稀疏性是否存在某种内在联系。)
当然,代价函数的设计方法,目前还在不断探索,感觉这是一个可以发论文的点。
6、整个神经网络系统的设计。
神经网络的设计方法,包含了研究人员对人脑的理解方式。CNN、RBM,以及andrew项目组设计的变态网络,都各有各的特色。要把整个网络框架设计好,还是比较需要经验的,也是相当费脑力的。当然,这是整个领域最有研究价值的模块。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06