京公网安备 11010802034615号
经营许可证编号:京B2-20210330
什么是大数据_大数据师什么_数据分析师培训
《自然》杂志在2008年9月推出了名为“大数据”的封面专栏,讲述了数据在数学、物理、生物、工程及社会经济等多学科扮演的愈加重要的角色,如今这个词语近却成了工商界和金融界的新宠。关于大数据的会议和论坛如雨后春笋层出不穷,但到底什么是大数据,依然众说纷纭。我们认为,大数据具有规模大、价值高、交叉复用、全息可见四大特征!特别地,最后两个特征体现了大数据不仅仅有“规模更大的数据”这种量上的进步,还具有不同于以前数据组织和应用形式的质的飞跃。
数十年来,信息产生、组织和流通方式革命性的变化,其中个人用户第一次成为信息产生和流通的主体。你上传到flickr的一张照片规模大约一兆,上传到YouTube的一个视频恐怕有数十兆,你还通过电子邮件把这些照片和视频发给了你的朋友,用QQ和MSN聊天,用手机打电话发短信,在电子商务网站的浏览和购物,用信用卡支付,发微博,打联网游戏……这一切都将转化为数据存储在世界的各个角落。不论是产生的信息量,可以获取的信息量,还是流通交换的信息量,都一直呈指数增长。仅仅十余年,很多企业爬过MB时代,走过GB时代,现在正被赶着跑过TB时代,去迎接PB时代。事实上,如中国移动、联通、电信这样的移动通讯运营商,如谷歌、百度、阿里巴巴、腾迅、新浪这样的大互联网公司,如国家电网、交通运输部这样的职能部门,每天数据的更新量已经接近或达到了PB量级。数据规模巨大且持续保持高速增长是大数据的第一个特征。
数据规模爆炸性增长的同时,数据产生的附加价值似乎没有与之同步增长。有学者认为数据价值的密度会随着数据量增加而降低——这种悲观的论调得不到任何必然性因果关系的支持。我们认为,这种滞后情况的症结在于缺乏从海量数据中挖掘价值的高效方法和技术人员。试想一组数据的价值如果是其规模的自然对数,当你从1GB的数据中挣到9块钱,给你1PB的数据,你只能挣到15块钱。而如果该数据的价值和其规模成正比,那么1PB的数据可以给你带来900万元的价值。对于前者,我们实在惭愧称其为大数据,最多只算是“一大堆无用的数据”罢了。举个例子,精确到小数点后几亿位的π值,其规模巨大价值巨小,如果还非要往万亿位、亿亿位上进行计算和存储,恐怕是正好与大数据的理念背道而驰。{数据分析师培训}对于真正的大数据,其价值的增长应该正比于规模的增长,甚至快于规模的增长。
刚才两个特征主要还是针对单一数据,下面的两个特征强调的是若干数据之间新的组织和应用形式。如果每一个数据都是一个孤岛,只能在其直接关联的领域发挥自身的价值,那么这不是一个值得我们兴奋和期待的新时代。我们要找到和实现数据之间一加一远大于二的价值,其间最关键的问题要发挥数据的外部性,譬如国家电网智能电表的数据可以用于估计房屋空置率,淘宝销售数据可以用来判断经济走势,移动通讯基站定位数据可以用于优化城市交通设计,微博上的关注关系和内容信息可以利用于购物推荐和广告推送……以用户为中心,结合用户在不同系统留下的数据,充分利用个性化的数据挖掘技术,是实现通过数据交叉而产生巨大价值的最可行的途径之一。综上,大数据要求数据能充分发挥其外部性并通过与某些相关数据交叉融合产生远大于简单加和的巨大价值!
如果谷歌把每天超过1个PB更新的数据按照他们内部约定的格式开放给一个三四个人组成的科研团队或者创业团队,这种仁善之举不会对这个团队有任何的帮助,因为他们没有针对这种量级的数据进行检索、抓取、计算、分析的能力。也许他们仅仅只对数据内部的一个特定逻辑片段有兴趣,但是他们没有办法知道这个逻辑片段位于这个数据的哪个位置,以及通过什么办法获取。想象一个披着盔甲的二维生物,其他二维生物无法看到它的内部,但是我们作为三维人,却可以通过第三个维度看到它所有的一切细节——低维物品对于高维生物而言是全息可见的。所以说,大数据规模可以很大,但是用起来应该像操作一个“小数据”一样简单,这就要求数据组织地非常好,内部的各种内容及关联清晰可见且容易调用获取。一句话,一般研究人员和开发人员可以自如获取数据的逻辑片段并进行分析处理。
现在所流行的“大数据的4个V”,只是不痛不痒生搬硬套的无病呻吟,对于深入思考大数据时代的必然性和未来具有阻碍的作用,同时也庸俗化了大数据的意义!举个例子,处理速度快绝对不是大数据的特征,而仅仅是互联网信息服务的自身需求——10年以前没有人谈大数据,互联网用户也不会苦等1个小时。那个时候数据量较小,但是实时计算的难度不比现在小,因为存储计算能力差,亦没有成熟的云计算架构和充分的计算资源。现在很多数据,譬如用于交通规划、宏观经济分析、电力系统规划、气象预报的数据,以及高能物理、等离子物理、基因工程等等实验数据,都是最最典型的大数据,而相关的计算工作,短的数小时,长的可以达到数月数年,一样价值巨大。显然,1秒钟算出来不是大数据的特征,而“算得越快越好”从人类有计算这件事情以来就没有变化过,把它作为一个新时代的主要特征,完全是无稽之谈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21