京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就业大数据:一眼看懂中国大学生就业现状_数据分析师培训
2014年是中国高等教育历史以来就业压力最大的一年,据教育部数据2014年中国高校毕业生将达到727万,为历史上最多的一年。从产业结构与学科结构结合的方式分析大学生就业的趋势,对于指导大学生就业具有重要现实的意义。
表一:2012年就业数据对比[1]
表一的第一列的计算方式是2012年分行业就业人数减去2011年分行业就业人数,第三列是2012年中国高校人才分学科培养人数。表一反映了目前中国每年以7%左右的经济增长速度可多容纳1000万人就业。本表中选取的行业均是可吸纳大学生就业的行业,餐饮、批发、运输等行业由于其特殊性则没有选取。
从表一中几列数据的具体对比中不难看出,目前高校的专业人才培养结构与产业人才需求结构存在一定的矛盾。一方面,产业人才需求不足,另外一方面相关人才供给不上。这是目前中国企业招人难、高校毕业生就业难的本质所在。
具体来看,中国的建筑业、制造业是新增吸纳就业的最多的两大行业,两大行业新增就业721万人,占中国整体就业人数的70.47%。换句话说,中国目前的支柱行业主要是建筑工程与工业制造,这两大行业属于劳动密集型产业,更多的需要一线建筑工人和一线生产工人。目前建筑工人的平均日薪较之前几年已经有非常大的提高,建筑工人全国平均最低日薪达到150元[1]。以东莞地区为代表的制造工业则存在常年的招工难。但是,高校目前培养的专科生从事这两大行业的意愿都相对较低,一方面的原因现在低技术含量的制造工业对年轻人缺乏吸引力,另外一方面,相对老一辈人能吃苦的精神来说现在的年轻人也不愿意从事劳动强度较高的建筑施工工作。
这就出现了中国式的就业矛盾,过高的期望值让相当比例的大学生找不到工作,而高速发展的产业却又招不到合适的人。
一、大学生就业的主力行业
从表一中不难看出,工业既需要高素质的技术性人才,也需要低素质的劳动力,而目前理科和工科的本专科学生加起来一共才137万,工业2012年新增就业人口435万。上述数据虽然不能直接证明理工科的学生供不应求,但是它说明工业仍然是吸纳大学生的最主要的行业之一。除开比较特殊的工业,目前金融行业、房地产行业、信息服务业、教育业、卫生业、文化娱乐业、政府及公共组织这几大白领行业是最具吸引力吸纳大学生求职的主力行业。
具体分析,目前多数“白领”行业人才供大于求,金融业、教育业、政府及公共组织、文化娱乐业、信息服务业等等都出现了供给严重过剩的状态。最为严重的是信息服务业、文化娱乐业、政府及公共组织。分析到具体的专业,计算机、英语、行政管理专业属于大学生就业难的重灾区。上述三大行业供求不平衡达218万人,这些专业的学生只能选择更低期望值的就业对象。这里不得不说到中国的文科大学生严重过剩的问题,法学、文学、教育学、经济学、管理学几大文科学科门类培养人数加起来达到433万人,占总大学生毕业总数的59.55%,这是一个令人震惊的数据,理工科学生一共仅占40.55%。按照中国的产业结构,几乎没有办法吸纳这么多的文科大学生就业,而大学教育又给予了这些文科大学生过高的期望值。
二、大学生容易就业的行业
目前人才供小于求的行业不多,从表一的数据来看,仅卫生业、房地产业人才的需求还不够。房地产业确实是吸纳大学生就业的主力行业,这与中国高房价和发达的基础建设行业密切相关,建筑土木系也确实是中国所有大学生就业环境最好的一大类专业。目前中国在建的工程量高达113万亿[2],相关的专业需求在未来十年始终会保持一个相对较高的增长空间。卫生业对人才的需求目前看来还不够,尤其是以乡镇为代表的公共医疗还有很大的发展空间,在老龄化人口越来越多的未来,中国的医疗行业还需要更多的相关人才。由于医学专业的培养难度大、时限长,扩招的难度也很大,所以医学类专业仍然具有较好的就业前景。
综上所述,大学生就业难是一个系统性问题,教育体制改革的重点必须从专业结构调整入手。值得欣喜的是,教育部目前已经着手开始探索职业教育、学术型教育两种高等教育方式,从中等教育阶段开始分流,探索人才培养的新模式、新结构是目前中国教育必须面临的改革难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20