京公网安备 11010802034615号
经营许可证编号:京B2-20210330
农商行携手神州信息迈入基于大数据的移动营销
大数据是目前最前沿的一个领域。在大数据时代,通过海量信息收集、数据处理和数据分析,纷繁复杂的人类行为变得有规律可循,旧的生产关系和生活方式落伍出局,新的产业生态和游戏规则喷薄而出,任何领域都不可能例外,金融更是如此。
面对这场"数据地震",怎样才能有效掌握收集数据、分析数据、利用数据的办法和途径,怎样才能在海量数据中去伪存真、变"数"为宝,将成为广大商业银行特别是中小银行必须认真思考和探索的全新课题。
越来越多的农村信用联社高瞻远瞩,为了满足法人行社对数据的个性化需求,通过原始数据下发,鼓励有条件的行社先行先试、创新转型。福建某农商银行作为当地的先行者,在近30年的发展历程中,始终坚持科技引领业务发展的战略思维,为中小企业、个体户和广大农村经济发展提供了强有力的金融支撑。该行领导对信息科技高度重视,并积极通过IT创新提升客户服务水平,向最终户提供差异化服务。2014年6月,该行携手神州数码融信软件有限公司(神州信息旗下企业),启动了行内最大的项目--数据集成综合运用平台建设。
由于当地的中小企业、个体户多,银行数量也多,各家银行之间争夺客户的竞争十分激烈。面对这一现状,行领导考虑利用大数据思维在移动营销方面寻找转型过程中的突破点,提出利用行内的数据对客户进行360度分析,找出目标客户,并向客户主动推荐产品,依此在本地区银行内率先为客户提供精准营销服务。
这一想法落在科技层面,则要涉及到大数据收集和整合应用,数据抽取转换分析工具使用,以及跨PC和移动端等平台的应用开发。行方与神州数码融信需要共同解决三大问题:第一,种类繁多且分散在省联社、行内系统和各业务部门的数据该如何整合?第二,不同的设备,后台服务器、PC机、前端PAD和营业网点排队机之间该如何进行通讯与集成?第三,营销过程中总行管理人员、柜员、大堂经理、客户经理该如何分工?这其中涉及了数据、技术、人员、设备和管理流程的协同,系统工程非常复杂,神州数码融信 "量体裁衣"提出了适合的解决方案。
系统整体架构
围绕该行"大数据战略"的部署,双方多次讨论形成了建设思路,以"资源整合、客户为本、绩效驱动、业务转型"为目标,通过企业级数据整合,实现银行内部和外部、结构化和非结构化的数据集成,利用神州数码融信独有的金融数据模型建设数据平台,利用智能分析推荐平台和移动端APP应用搭建移动营销平台。
在实际建设中,该项目的重点是依据客户基本信息、账户数据、交易数据、行为数据,深度挖掘大数据中隐藏的价值,为银行寻找目标客户,分析、推荐产品实现精准营销。同时,通过移动端设备为客户提供差异化服务,借助PAD,手机、短信、微信等移动设备和电子化渠道初步建立了O2O的营销服务体系。除了重点建设移动营销平台外,该项目还建设了行内综合报表系统、领导驾驶舱、客户管理系统、智能排队系统、商户管理系统等数据应用系统。该套数据应用综合解决方案,不仅实现了该行科技的又一次腾飞,更为迎接全新的"大数据"信息化时代到来打下了坚实的基础。此次数据的成功应用,将助力银行创造先发竞争优势,打造不可复制的核心竞争力。
神州数码融信专家介绍,分析推荐是基于大量数据的运算与分析,分析推荐平台定位是提供可以根据不同的应用需求进行参数化配置的个性化数据分析、推荐服务,并提供基于风险的预警。该平台旨在帮助客户通过灵活的参数调整,来达到最优的推荐效果,进而帮助用户快速便捷的发现需要的信息,在合理的参数体系下,通过适合的方式获取需要的信息,提高用户体验,最终提升客户的忠诚度以及客户对服务的满意度。
当前,以互联网为代表的现代信息科技,特别是门户网站、社区论坛、微博、微信等新型传播方式的蓬勃发展,移动支付、搜索引擎和云计算的广泛应用,已构建起了全新的虚拟客户信息体系,并将改变现代金融运营模式。社交媒体的兴起为银行创造了全新的客户接触渠道,来自银行网点、PC、移动终端设备、传感器网络等传来的结构化、非结构化的海量数据,为银行创造了深化客户挖掘、强化交叉销售、加快产品创新的广阔空间。这也为银行突破同质性,实施差异化战略提供了支持。
因此该项目未来的发展,是在第三方电商数据方面和社交媒体数据方面进行更多、范围更广的集成,为全面、准确分析客户数据,分析推荐产品,让用户拥有极佳的用户体验方面持续优化和完善,推动该行成为本地区、乃至全省金融业的典范与标兵。
数据之争就是未来之争。未来的商业银行不仅要做数据大行,更要做数据分析、数据解读的大行,占据价值链核心位置,从数据中获得洞察力,引领传统模式变革。拥抱"大数据",神州数码融信将与更多的中小银行一起把握时代契机,为银行的用户提供高品质、差异化服务,助推金融市场的持续繁荣与发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27