
大数据时代,危机公关也要变脸了_大数据培训
当代社会,舆情危机的爆发与扩散,与病毒传播的模式存在高度相似性。企业潜伏的质量问题、安全问题、经济问题、市场问题、民工讨薪问题等在一定条件下,可能随时爆发。这些问题一旦爆发,危机效应将在瞬间传递给世界,对企业的商誉和品牌造成极大伤害,严重的可能危及企业的生存。现实告诉人们,每一次重大突发事件,都伴随着海量的信息在互联网和其他媒体上传播,信息量之大和传播速度之快,都是前所未有的。这是在互联网的条件下,大数据时代危机传播的重要特征。
“大数据”给企业的危机公关带来了空前的挑战,也带来了巨大的机遇。互联网颠覆了很多传统的工作和生活方式,企业在危机预防与处置过程中,不仅要关注危机产生的因果关系,更要关注危机事件的相关关系,只要发现了突发事件各个现象的相关性,就可以寻找到危机公关的方程解。大数据为企业危机公关从战略到战术的创新提供了机会,云计算技术和互联网为收集和利用大数据提供了条件。通过收集和分析数据,建立数学模型,将危机问题归结为相应的数学问题,从中快速获得有价值信息,识别潜在的危机,监测危机爆发前的蛛丝马迹,及时发出警报,就可以给企业危机应对预留出时间和空间,帮助企业未雨绸缪,做出相应的对策,使企业在处置危机过程中具有更强的决策力、洞察发现力和流程优化能力。
“大数据”能为危机公关提供精确的数据和可靠的指导,用数学的概念、方法和理论,给危机传播以定性或定量的把握。企业需要通过与关联方的合作,来实现大数据的利用。例如在建筑企业里发生概率比较高的农民工讨薪问题,企业尝试运用危机公关太极运行模式,通过专业公司收集历年来农民工讨薪的相关数据、企业内部相关数据,农民工的工资与企业回收账款、农民工返乡时间、政府关于农民工的政策、媒体和公众对农民工工资问题的关注度等数据,把一方面或多方面的事件串联起来,形成相对完整的记录体系,以时间为轴将其系统化、完整化、精确化,制作数学模型,通过专家比对来识别危机,分析预测未来若干时间内农民工讨薪发生的概率、媒体的报道概率和舆情烈度,据此发出早期警报。企业近两年来,尝试运用数据分析,预测夏收和春节前容易发生农民工讨薪问题,这个时间段是突发事件的高峰期,企业据此提前采取措施,从而降低了农民工讨薪事件发生的概率。
质量安全事故是媒体关注的热点问题,对此可以收集历年数据和当前的相关数据做全面分析。比方说,一个工程的混凝土数据、钢筋的配比、施工的温度、基础和框架的承重、工程环境和媒体、政府以及公众的关注度等,通过量化的方法把这些内容转化为数据,制作成数学模型,来预测是否会发生质量安全事故,一旦事故发生,负面舆情的烈度。这样的预测可以帮助企业抢先一步确定危机应对策略,采取应对措施,配置相关媒体资源,对于减轻危机事件损失、维护企业品牌和形象都十分有益。
近年来,企业探讨大数据应用预测危机传播有了一定成果。每逢敏感时间节点,企业依据数据做出预测,将预测结果确定在一个有效范围内,发出早期的警报,收到了较好的预防效果。大数据分析预测危机爆发的可能性和危机传播的烈度、趋势和走向,根据多年来的数据累积和分析,准确率可以达到70%以上,这就为企业的危机解决方案提供了决策的依据。实战中,大数据提高了危机防范和应对能力,使新闻危机发生的概率下降28%,危机传播的概率下降42%。
危机公关是一个复杂的大系统,大数据时代危机公关要有新思维。探索以大数据为基础的解决方案,用数据为危机公关服务,是提高危机公关有效性和高效率的重要创新手段。中国建筑工会主席刘杰在《危机公关道与术》序言里说“有危机防御能力的组织将赢得未来发展的优势”。有危机防御能力的组织将是那些能够驾驭所拥有数据的企业。只有改变以往危机公关思维,才能适应这个时代的变化
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01