
应尽快实现大数据技术自主自控_数据分析师
借助大数据治国必须加强核心技术和产品研发,但专家提醒,要避免走国产操作系统研发的老路。事实证明,PC时代依靠政府资金研发的国产操作系统至今无法撼动微软的垄断地位,如今的移动互联时代,要挑战安卓的地位也非常困难。在国内外差距巨大的现实情况下,我国基础软件实现赶超,必须走合作开源之路。
国家信息中心研究员宁家骏认为,政府不应再定向支持某些企业,应变“相马为赛马”、变资金扶持为市场引导,鼓励有创新能力的企业都参与进来,积极利用开源模式和开放社区资源,形成我国大数据产业发展的开源生态系统,尽快实现我国大数据技术的自主自控。
宁波市智慧城市建设协调处副处长姚坚建议,应尽快开始实施“去IOE”。比起使用IBM小型机每年的维护成本,去IOE的成本不算大。如果国内技术能够实现去IOE,应该大力倡导,同时国家层面提供一些可靠的技术保障,自上而下实施去IOE。
专家介绍说,目前大数据的关键技术研发突破主要表现在以下几个方面:一是不同数据库类型大数据的集中,能够在不同数据类型之间进行交叉分析的技术,是大数据的核心技术之一;二是不同政府部门之间的大数据共享与交换机制;三是双活容灾备份技术构建的大数据应用平台,虚拟机从一个中心切换到另一个中心的时间接近于零。
不少业内人士还建议,可以通过具体师范项目推进大数据治国进程。比如在节能降耗、环境治理、交通运输、食品安全、金融服务、健康医疗等关系国计民生的重点领域,通过政府购买企业服务等方式推动大数据应用的政企合作,改进政府管理和公共治理方式。
事实上,大数据应用已经引起美、英、日等国政府的高度重视,多国将大数据产业发展定位为国家战略,密集出台多项专门政策,一方面开放数据,给予业界高质量的数据资源,一方面在前沿及基础性研究上投入大量资金和人力,领跑大数据发展。
美国政府早在2002年就开发了一个容量巨大、集聚性强的大数据基础架构;2009年,“一站式数据下载”网站data.gov正式上线,囊括了交通、经济、医疗、教育和人口服务等方面的海量数据;2012年,奥巴马政府颁布了高达2亿美元的《大数据研究和发展计划》,白宫科学技术政策办公室、美国国家自然基金会、美国国防部、美国能源部等多个联邦部门和机构,均参与其中。
欧盟2010年正式发布“欧洲数字化议程”,2012年在“欧洲数字化议程及其挑战”中制定了大数据战略。
此外,韩国、日本、新加坡等亚洲国家,也从国家战略层面积极推动大数据产业的发展。这些大数据应用领先的国家有三个显著特点:首先,政府大数据应用项目多基于共享存储的结构化数据库,并不使用实时、动态和非结构化或半结构化的数据;其次,公共部门致力于规范大型而复杂的数据集,政府期望通过大数据应用提升政府服务民众的能力,解决国家面临的重大挑战问题,如经济、医疗、就业、自然灾害和恐怖袭击等;第三,政府设立的大部分大数据项目刚刚起步或计划实施,多数仍处于发展的初级阶段。
全国政协委员、九三学社中央副主席赖明说,从世界发展潮流看,全球的大数据应用整体处于发展初期,我国大数据应用也刚刚起步。应抓住当前大数据技术以开源为主、尚未有任何国家形成绝对垄断的有利契机,改变我国长期处于信息产业链末端赚取低端利润的现状,争取战略制高点。
腾讯互联网与社会研究院首席经济学家孟昭莉说,全球大数据细分行业内聚集了大中小型企业,中国一些大数据领军企业和学界也在发力,目前虽未取得领先,但短时间内实现弯道超车也是有可能的。
“丰富的数据资源为我国大数据发展带来了肥沃的土壤。”宁家骏说,中国拥有全球第一的人口数、互联网用户数和移动互联网用户数,国土面积广、经济体量大,这些都是其他国家难以企及的海量数据资源和应用需求潜力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10