京公网安备 11010802034615号
经营许可证编号:京B2-20210330
美国大数据治理背后的“理性乌托邦”
人类决策中最宝贵的是人类能看到环境和理解环境,这些洞察力并不能完全由参数来描述。海量信息并非灵丹妙药,除了大数据外,社会仍需辩论核心原则,意识形态产生的差异仍将持续,学界、商界和政界过分关注技术分析,可能忽视创新思维和思辨分析,是对其他方法论的压抑。
近日美媒报道,奥巴马是最重视数字和大数据分析的美国领导人,白宫更是充分运用“大数据民意”。报道称,奥巴马从选举到治国都依据数据行事。2014年1月,奥巴马要求总统行政办公室用90天的时间,研究大数据如何改变人们的生活与工作形态,政府与民间、企业与消费者之间的关系。可以说,奥巴马本身就是诞生于“大数据”中。就在击败对手罗姆尼、再赢美国总统选举的当天,《时代》杂志撰写了一篇文章,描述了奥巴马总统选举获胜背后的秘密——数据挖掘。奥巴马团队拥有“核代码”,数据是能击败罗姆尼的最根本优势。在平时的治国政策上,律师出身的奥巴马高度重视数据与网络反映的社会现状,白宫有专责人员处理网络信息与社交媒体策略,外交、经济与社会政策,必须经多层次民意与舆论数据分析后方能推动,共和党在这方面起步较晚。
奥巴马政府密集地使用大数据制定政策,使得依赖大数据分析成了美国各行各业的趋势。大数据是否全面反映社会现实?国家政策是否该依赖网络信息?大数据是否应对所有危机、解决现实社会问题的灵丹妙药?其实,大数据治国背后,是西方工具理性思维的“升级换代”。结合大数据这样的信息时代的新武器,这种认知世界和处理问题的方式容易陷入一种“理性乌托邦”,即认为数据表面上的理性客观,能使得由其导出的结论和决策也必然理性客观。事实上,大数据分析有其限制,仅是一种分析模型和认知方法,是政府、产业与公民社会做决定的一种参考。
首先,根据“混沌理论”的解释,汇集100倍数据量都无法解决某些问题。总会有一些东西不在模型参数的覆盖范围内,2008年金融危机就是过分依赖预测风险模型酿成灾难的例证。由于完全剥离了数据所处的具体环境,数据缺乏可理解性和适用性。大数据研究有可能“敏锐地”发现问题,却无法给出问题合理的解释,也无法给出有针对性的对策,限制了其应用范围。
其次,“大数据”很容易变成“数据大”,对于数据分析的过度推崇,很容易把大数据分析变成最好甚至是唯一的分析工具,让数据一家独大。人类决策中最宝贵的是人类能看到环境和理解环境,这些洞察力并不能完全由参数来描述。海量信息并非灵丹妙药,除了大数据外,社会仍需辩论核心原则,意识形态产生的差异仍将持续,学界、商界和政界过分关注技术分析,可能忽视创新思维和思辨分析,是对其他方法论的压抑。
最后,大数据红火背后,是现代西方文明诞生以来对理性的推崇和自满。对大数据过分推崇和依赖就是这种“理性乌托邦”的最新演绎。这种思想假定不确定的世界里有已知的风险,而大数据计算为一个不确定的事件产生了精确数字,所以必然客观、理性、正确。
上述虚假的确定性,本身就是一种陷阱。奥巴马政府的大数据治国理念,显然也不是“万灵丹”,无论是医疗改革、中产阶级衰落还是经济泥潭,美国社会的复杂现实问题还远远没有解决,也不仅仅是数据就可以描述、解决和指导的。毕竟,误用大数据比没有数据衍生的问题来得严重,而只推崇和依赖一种方法论将带来更严重的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21