
如果你不知道大数据,至少应该知道这七个概念
大多数人根本不知道大数据(Big Data)到底是什么的时候,不可否认的是,大数据已经在 21 世纪掀起一场惊涛骇浪。
根据研究机构 IDC(国际数据资讯公司)的分析,这个世界上的资料正在以每两年就翻倍的惊人速度增加中。了解大数据、如何利用巨量资料,成了人人关心的重点议题。
尽管大数据的定义各家歧异,但基本上,大数据领域里的每个人都同意一点:大数据不仅仅是指更多资料而已。这篇文章整理出 7 个重要的大数据观点,希望大家不只是看着大数据的表皮,而能用不同的角度深入检视大数据。CDA数据分析师是指在互联网、零售、金融、电信、医学、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才。CDA数据分析师覆盖了国内企业招聘数据分析师所要求的所有技能,包括统计知识、软件应用(SPSS/SAS/R等)、数据挖掘、数据库、报告撰写、项目经验等。
1) 最基本的大数据定义 The Original Big Data
大数据的 3Vs 定义是目前为止最受推崇且最广为人知的说法。3Vs 由 Gartner 的分析师 Doug Laney 最早在 2001 年时提出,分别代表资料量 Volume、资料传输速度 Velocity、资料类型 Variety。从那之后,便有人在 3Vs 之外陆续提出更多「V」, Veracity、Validity、 Value、Visibility 等,其中又以 Veracity (真实性)最被普遍认同。
2) 大数据即科技 Big Data as Technology
大数据并不是什么崭新的概念,好几十年前 CERN 的科学家就在处理每秒上看 PB (Peta Bytes)巨量资料。那为什么一直到近几年“大数据”这颗原子弹才被投到科技圈,轰得人人叁句不离大数据?
现今要处理的资料量更庞大、资料产生跟处理速度更惊人、资料来源更多样,于是处理、储存大量资料的新技术跟工具快速发展,像是开源软体 Hadoop 跟 NoSQL 资料库。新科技诞生后,开发者跟使用者需要一个专业名词来与之前的科技作出区别,于是“大数据”一词因应而生。
因此大数据不只是指资料,也指这些用来分析、处理巨量资料的新兴科技。
“Big Data is the new tools helping us find relevant data and analyze its implications.”
3) 大数据即不同的资料类型 Big Data as Data Distinctions
现今”大数据“所涉及的资料已经和过去的资料已经不同了。根据 Hortonworks 公司战略副总裁 Shaun Connolly 的说法1,过去的资料大部分是人工手记下来的交易纪(Transactions),现在则是机器替我们记录下来的交易资料;除此之外,还有人们跟事物、企业间的互动资料(Interactions),例如人们在网路上点击网页跟连结的纪录;最后则是机器自动生成、累积下来的观察资料(Observations),例如智慧型家居产品记录下来的室温变化等。
因此 Shaun Connolly 定义大数据是由交易、互动、观察资料所组成的资料型态。
“Big Data = Transactions + Interactions + Observations”
4) 大数据即讯号 Big Data as Signals
SAP 公司的高管 Steve Lucas 不以资料型态来看待大数据,而是以目的(intent)跟时机(timing)。在过去,企业收集到的资料只能在事情发生后引以为鉴,但现在企业收集到的是「新讯号」2,可以在事情发生前得到前兆跟提示,进而做出行动来影响事情结果。例如某品牌广告在社群网站上的「讚」数、点阅率如果跌落谷底,公司便可以预期接下来产品销售量一定也会惨不忍睹;同样的情形在过去时,公司所得到的数据就是产品发售后的销售量。
“Big Data is the new signals.”
5) 大数据即机会 Big Data as Opportunity
根据 451 Research 的数据专家 Matt Aslett,他将大数据定义为“以前因为科技所限而忽略的资料”,这个说法也受到许多人的赞同,因为多半提起大数据时,都是在讨论这些以前无法分析处理、囊括其中的资料。
“Big Data is data that was previously ignored because of technology limitations.”
其实他在文中并不是用 Big Data 一字,而是使用“Dark Data(暗数据)”。事实上许多公司都使用暗数据这个字,因为当资料变“暗”了,便表示一个漏掉的讯息、错失的机会,在企业策略中留下一个盲点4。一直以来,各企业雇用数据专家的目的就是希望能“点亮”这些暗数据(illuminate the Dark Data),观察到以前不曾注意过的趋势、做出更全面的考量。
也因此,SAP 曾经做过一个调查显示,将近 76% 的企业高管们视大数据为“机会”。个人也满喜欢这个观点,毕竟现在各公司在推动大数据的塬因,就是希望能掌握全面的讯息、把握住这些机会!
“A new survey by SAP suggests that nearly 76 percent of executives see “Big Data” as an opportunity” 5
6) 大数据的哲学定义 Big Data as Metaphor
着名的摄影师和出版人,前《Time(时代)》、《Life(生活)》、《National Geographic(国家地理)》杂誌摄影师,负责过有史以来最大摄影项目的 Rick Smolan ,在他的着作《大数据的人性面孔》(The Human Face of Big Data)一书中,则给了大数据一个最完美的哲学定义 ——“大数据是帮助地球建构神经系统的一个过程,在这系统中,我们(人类)不过是其中一种感测器。”
“Big Data is the process of helping the planet grow a nervous system, one in which we are just another, human, type of sensor.”
深奥吧?如果你读过《大数据的人性面孔》一书,相信你应该会对这个比喻点头如捣蒜。
7) 大数据是旧东西的新噱头 Big Data as New Term for Old Stuff
也有部份人认为,“大数据”一词被严重滥用,大数据只是商业智慧(Business intelligence)或商业分析(Business analytics)演化后的新字。
从 Google Trend 里可以看出,从 2004 年到现在,“Big Data”一字的搜寻次数从 2011 年开始飙涨的同时,人们对“Business intelligence”的兴趣则是持续降低。“Business analytics”趋势虽然小幅上涨,但短时间应该不可能赶上另外两个字的风潮。
结语
以上七个定义/观点无论认同与否,相信大家都同意的是:Big Data 绝对是个“Big Deal”,接下来几年里,大数据将带来无限商机。CDA数据分析师的就业前景可选择于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个行业和领域。,根据三个不同的等级胜任不同的数据分析工作任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15