京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智联用大数据加强企业与用户的匹配_数据分析师
数据对任何一家互联网企业都至关重要,一切以数据说话,已经成为未来互联网发展的趋势。如能对数据进行有效利用,细微到优化一个N级页面,宏观到可以为产品的未来发展和运营提供科学的数据参考和指导。
契约一直对数据非常感兴趣,不过还从未接触过关于招聘类产品的数据。招聘类产品的特殊性在于,不但要分析B端数据,还要分析C端,再将二者做出有机的“匹配”,相比其他互联网产品的数据要复杂得多。上周有幸收到邀请,参加国内最大招聘网站智联招聘的媒体见面会,才得以了解智联是如何将数据运用得炉火纯青的。
数据支撑下的“1%的秘密计划”
最近智联做了一个“1%的秘密计划-顶尖企业网络招聘”的活动,精选百家顶尖雇主参与,其中不乏智联最佳雇主的阿里、宝马、星巴克等顶尖企业,旨在“匹配”顶尖企业和高级人才,提前推动了春季招聘旺季热潮。
往年“网络招聘旺季”都在春节后的3、4月份,但是智联这次在春节前的1月底就开始,做出这样的决定,并不是智联单方面要抢个先,而是在分析了数十万家独立雇主和近1亿注册用户的数据后发现,今年的招聘旺季已在春节前的1月开始,所以选择了这个合适的时机来推出。
这也不能说是旺季前置,而是淡季不淡。在C端,往年大多数人都是过完年后找工作,因为他们特别看重年终奖。但是随着机会越来越多,只要能找到合适的职位,很多用户对年终奖已经没那么在意了。在B端,企业很清楚人才的重要性,如果年前不招到合适的人才,年后必然会陷入激烈竞争的困局,就更招不到人才,特别是在一些非常热的行业。
智联这次活动并没有针对所有行业、城市和用户,如果从这三个维度看的话,“顶尖企业网络招聘”活动限定的目标是:
行业,主要集中在6大行业,IT、互联网、房地产、制造业、金融和通信,这个几个行业当下最热门,人才需求异常强烈,而人才有极度稀缺。
城市, 覆盖北京、上海、广州、深圳、杭州、天津、成都等全国7大主要城市,以及其他经济迅速发展的城市及地区。虽然发达城市人才多,但是公司也多,公司之间的人才战已不可避免。
用户,不是针对刚出校门的学生和高端人才,主要是针对白领。 大多数企业不愿意招学生,因为培养周期长、成本高;而高端人才主要是被动求职,这个智联已经交给卓聘去做;而白领机会最好,可以在各种行业和公司之间跳,机会成本很低。
由此可见,智联的“顶尖企业网络招聘活动”无论在时间、行业、城市,还是企业和用户的需求,都是做了严格的数据分析,而不只是临时的头脑发热。 所以与其说是智联提前推动了春季招聘旺季热潮,不如说是淡季变旺季推动了这次网络招聘活动的诞生。
数据加强企业与用户的“匹配”
对于职位质量方面,智联对职位的真实性和职位要求非常高。比如智联最近推出1%的秘密计划,主要是针对工作零到五年的人推出的产品,而对高端人士就不一定有效。智联这就是明显希望能在B端找到最好的企业、最好的职位,再根据用户的需求,对B和C做出精准高效的“匹配”,而不是盲目粗暴的推荐简历。
智联对用户做出调研,从学生到白领再到高端人士,都有不一样的用户洞察。智联对用户进行细分,再根据不同的需求给他们提供最合适的工作和产品。比如智联这次的“1%的秘密计划”大型网络招聘会,就提供了一些职位分类,比如晋升最快的职位、福利非常好的职位、薪资任性的职位等,让每个用户都能迅速匹配到自己想要的职位,大大提高“匹配”的效率。
智联会随时跟踪用户的情况,为用户提供从校园到初入职场再到高端工作者,是职业生涯式的个人发展平台。智联会用不同方式激活用户的简历,激励用户去将简历填写完整和更新。即使部分简历确实出现一段空缺,智联通过数据分析,根据工作经验及空缺年限,也会大概知道此用户的一些基本状况。只有准确把握每个用户的真实属性和需求,才能通过EDM、精准搜索及匹配推荐等方式,直接告诉求职者有某家企业的某个职位适合你,可以去尝试下,是真正的切中到用户的要害,而不是随便发一堆垃圾邮件,让用户自己去繁琐的匹配。
从以上看来,智联其实是一家以数据为驱动的互联网公司典型。据我所知,智联在上市后,以覆盖求职者整个职业生涯为出发点,打造“3的三次方”产品模型,即为学生、白领、高端(专业人士或管理人士),匹配3类产品:测评(我是谁)、网络招聘(我能干什么)、教育培训(我如何进步),并通过线上、线下、无线三个渠道,为职场人的全面发展打造平台。通过对数据分析,对每个B和每个C做出精准服务和“匹配”,从而实现从“简历仓库”到“人才加工厂”的战略转型,为中国人才市场打造一个闭环生态链。另悉,智联招聘即将秘密推出核心在线产品,拭目以待!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27