
三招揪出问卷中的李鬼_数据分析_大数据
相信许多做个调查报告的人都会有这样的问题——问卷的不真实使得数据分析不能。但是如果能在问卷整理的时候就及时发现问题,那么你就不会在deadline的前夜被劣质的数据折磨的如此狼狈不堪。现在,我"数据分析师"分享一下数据抓鬼的三班斧,一来能帮你审核数据、辨识真假,使得从统计秘籍上学来的分析招数能有用武之地;二来也能间接自律一下前线的调研,顺便整治一下市调行业的不良之风。
第一招:设置同质题目,一个问题,多处提问。
同质题目是指一个问题在问卷中设置两种问法,对一个受访者访问两次,只要这两个答案不一致,哈哈虚假数据!比如:年龄和身份证号码一起问,小孩的年龄与年级一起问。还有就是利用态度量表,设计正反问法。例如在一份测度啤酒消费习惯的态度量表中,问题1是:“我很喜欢喝啤酒”和问题5是“要不是应酬的需要,我绝对不喝啤酒”一对同质问题,设置“非常符合、比较符合、不太符合、与表述相反” 并赋值“1、2、3、4”。当某个案,问题1与问题5的选项之和超出【4,6】的范围,我们可以判定是虚假个案。比如:问题1选1,问题5选2,两者相加得分为3;问题1选3,问题5选4,两者相加得分为7。3分和7分都超出了所能容忍的范围,判处该个案死刑。
第二招:测度选项比例,判定虚假。
一般来说,数据分析师通过分析每一份个案中同一选项的比例,可以发现虚假数据。比如,在某个30道题目的调查问卷中,某选项的比例超过70%,比如70%的选项全是C,则可将该份问卷判定为虚假问卷。同理,通过计算某个访问员所有调查问卷中选项的比例,如果某一项的比例超过阀值,则可以认定该访问员造假。那么不要手软,坚决对该访问员判死刑。
第三招:测度总分分布,衡量整体质量。
这里重点介绍如何通过测度数据的分布,来判定调查问卷数据的可靠性。以满意度调查为例。数据分析师在对数据量表量化之后,可以计算出每个个案所有量表的总分。比如,一共有30题,每题的得分范围为1-10分。那么总分的理论取值范围就是30-300。如果我们一共收集了500份问卷,那么就应该有500个总得分。理论上讲,一项服务的满意度应该服从正态分布。因为大多数被访者的评价应该差不多,高分和低分的评价应该比较少。当然,这只是经验判断。那么现在我们来看,调查结果的总得分分布,如果接近正态分布,则可以说明该调查数据是可信的。如果数据远远偏离正态分布,则认为该数据存在比较严重的质量问题。这样任何分析都是没有意义的,应该对本次调查判死刑。
招外招:记录填写时间,越短越可疑。
最后,分享一个招外招。如果你做的是网络调查,那么这一招很管用,堪称绝招。具体做法就是系统自动记录用户的答题时间。如果用户答题所用的时间很短,则认为该用户纯粹是在骗奖品。如果你们的服务器很牛b,牛b到可以记录被访者填写每一道题目的时间耗费,那么纵然李鬼潜伏的再深,也得乖乖束手就擒。cda数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10