
2015年,这些科技技能必须学 大数据也上榜
在科技领域,没有谁可以固步自封。科技的发展如此迅速,你去年掌握的技能,在今年也许就已经过时了。据《劳动经济学研究》(Research in Labor Economics)一书研究,科技领域的信息淘汰率为每年30%,即前一年近1/3的相关技术知识将在今年被淘汰。
但是不要惊慌,面对科技闪电般的更新节奏,紧跟新兴技术和发展趋势,并学习需要的技能,可以让你遥遥领先。无论是对于个人还是组织,不断学习都是保持持续竞争优势的关键。
关于这一点,本文列出了六大科技技能,在2015年知道这些技能不仅炫酷,也是一种基本需求:
1.编程
编 码是当今全球需求的头号技能。尽管编程和计算机科学在大学以下教育体系中仍处于边缘地位,但很明显,编程能力已经变得和阅读、数学等基本文化技能一样重 要。幸运的是,如今无论你是什么年龄,或是什么技术程度,都有办法入门编程技术,而且其中许多方式都是免费的。比如,你可以通过在线编程学习网站或者 MOOCs上的相关课程自学编程。
2.大数据
根据福布斯报道,大数据将在2015年继续增长,这部分归功于物联网的兴起,物 联网能把科技嵌入到几乎任何事物中。由于越来越大的数据量产生,如何收集和分析这些数据变得至关重要,尤其是当这些数据涉及到客户的喜好和业务流程。不管 你在什么行业,如果忽略大数据,你将错过很多关键的营销和决策机会。在2015年,学习大数据的概念、技术和交易势在必行。
3.云计算
TechRadar 网站在本月报道称,2015年将是云计算成为“新常态”的一年。OpenText公司的CEO Mark Barrenechea写道,通过信息密集型处理的数字化技术,可以消减高达90%的成本。Barrenechea预测,到今年年底,我们将看到“一个混 合部署的世界,其中一些信息和应用程序会被放置在云中,其余的部分则位于客户端”。学会利用云计算灵活的能力,你可以在很多地方得到提高,比如数据安全性 和协作能力。你可以通过一些在线课程学习云计算的相关知识和技能。
4.移动
正如Six Dimensions网站指出,“如果你没有移动战略,你就没有未来战略”。这在2015年变得尤为准确,英国《卫报》预测在2015年越来越多的企业将 学习如何使他们的创收过程变得“移动”。根据福布斯报道,2015也是移动和云计算融合的重要一年。这意味着更多的集中协调应用程序将在多个设备上使用。 在2015年,学习移动技术和移动应用程序相关知识很有必要。
5.数据可视化
数据一直在保持指数增长,这意味着任何你希望进 行在线交流的信息都必须找到越来越有创造性的方式来呈现。这时候就该数据可视化技术发挥作用了,数据可视化主要借助于图形化手段,清晰有效地传达与沟通信 息。Creative BLOQ网站指出,数据可视化技术可以揭示一般数据所不能揭示的细节。幸运的是,你不用必须成为一个网页设计师或开发人员,才能创建引人注目的信息图表, 目前有很多免费的数据可视化工具,你可以通过它们增强数据的可视化。
6. UX设计技能
用户体验(UX)设计师考虑终端用户 的易用性、使用效率、以及(如网站或应用程序)系统接口的一般体验。Smashing杂志指出,鉴于用户体验一直处于重要地位,现在用户访问网站的方式变 得越来越多样化,包括移动设备和各种app。系统越复杂则需要越精细的规划和构建。不只是专业设计师可以从学习UX设计中获益,任何人都可以。
这六大科技发展趋势正在重塑各个行业中企业的内部运营和与客户沟通的方式。了解以上这六个技能,你不必担心落于人后——至少在今年不会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01