
公安与大数据应用息息相关_数据分析师
近年来,中国大规模推进平安城市级视频监控系统的发展,使得视频图像侦查(以下简称图侦)在公安刑侦业务中发挥越来越大的作用,取得的社会效益很高,进而又促进了监控系统的建设规模进一步扩大,加上高清化技术的发展和推广,直接的结果是导致相关的数据量急剧增长,价值密度越来越低。于是,监控领域也主动和被动的跨入了“大数据”的时代。
大数据并不新鲜,早已经在不少领域得到成熟的应用。与日常生活最相关的就是电商,电商通过大规模的商业数据统计、分析,可以得出潜在的商业规律,为下一步的商业行动提供依据。例如经过统计分析可以得到某个领域和时期内的消费规律,商家就可以根据这个规律来向用户提供个性化的广告服务与推荐,促成交易。之前美国的“棱镜门”事件更是大数据的高端军事应用。
公安与大数据应用息息相关
“大数据”不等同于“大数据应用”,不同行业中的数据要形成大数据应用,并非用“拿来主义”就可以解决的,要做好视频监控的大数据应用,首先要确定应用的模式和目标。大数据的应用说到底还是“有目的”的应用,没有一定明确的应用目的和方法,就没有设计大数据处理系统的依据,说白了就是“不知道要什么,那何谈怎么做?”从其他行业只能借鉴到处理系统搭建的技术,但是不能借鉴处理系统搭建的目的与输出。
如此说来,视频大数据系统的发展在哪里?从作者的看来,视频大数据的应用必然首先产生在公安业务中的图侦应用,有以下几点理由:
1.公安掌握了最多的视频数据来源。也是对视频大数据发展最直接的需求者和受益者。视频大数据的发展必然首先为公安下辖的业务服务。
2.相比于其他公安业务,图侦的应用模式多样,思维活跃,围绕着“发现线索”的目的可衍生出多种的技战法,只有从这些具体的技战法中才能提炼出需求,真正告诉系统的设计者“我们要什么”。
图侦里的大数据应用需要哪些?像商业大数据那样找规律的应用似乎还远了点,目前最实在的就是从海量视频数据里把有相同线索特征的图像给找出来,让干警发现出新的案件线索。至于“怎么找?”这就是由公安来提的应用模式了。因此,视频大数据的发展并不是简单的由技术厂商做主导,而是需要公安体制内既有刑侦实战经验,又有科技化功底的复合型人才,共同来参与视频大数据应用的发展,在此,作者也呼吁公安系统重视对于这样复合型人才的培养。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03