
监控结构化处理是大数据应用难点
除了应用模式,技术也是目前横亘在视频大数据发展道路上的另一座大山。有很多方面,涉及采集、存储、管理等多方面的领域,但是在作者看来,最大的技术障碍还是在于视频的结构化。商业应用上的数据多为结构化数据,每个数据都由一系列明确的描述属性组成,大数据处理系统则可以根据使用者的要求将不同的属性进行归类,从而发现和掌握事物发展的客观规律。而视频则不然,除了时间和空间的属性外,并没有其他的标签。除了按照时间和地点查找相应的视频外,大多的视频只能靠人慢慢甄别,这离大数据应用还相去甚远。
要做到大数据应用,就必须为每个视频贴上更多的属性标签,也就是业内所说的结构化过程。作者认为这是未来视频应用技术的制高点,其核心是模式识别算法,要做到自动把视频中的特征识别出来贴上标签后入库。这样在日后需要的时候,才能实现海量视频的快速查询和碰撞研判,甚至能像商业大数据那样做到归类统计。
结构化的意义不难理解,只是真正实现起来很难,作者总结了有几个原因:
1.识别什么特征?一副图像或者一段视频可以有无数角度的标签属性去描述,什么才是我们需要的属性?这与我们需要得到的目的密切相关,这就需要公安图侦的人才来归纳终结。
2.识别算法开发难,由于是平面图像,因此特征的识别主要原理就是看图像区域中的轮廓、颜色、纹理与特征库进行比较。但是在同一个物体在不同监控角度的摄像头中显示出的轮廓都不相同,因此无法做到识别。
3.大规模数据处理难,即使做到了识别算法,但是如果要通过数据处理服务器的形式对大规模的视频进行结构化处理,这个建造成本巨大,其能源的耗费在中国这个夏季需要限电的情况里也不切实际。
如此看来,视频结构化的路似乎走不通,但是,目前在业内也出现了许多“曲线救国”的方法。比如:
1.大力发展电警卡口建设:目前电警卡口在图侦上的应用需求和频率早就超越了交警,因为案件基本都要与车辆发生联系,这能找出很多的线索。而卡口电警对于车辆的抓拍角度是相对固定的,能够开发出相应的车辆特征识别技术,电警卡口属于业务需求和技术实现的一个很好的匹配点。
2.结构化识别前移:在摄像机采集到图像的同时就要做好结构化的工作,例如卡口摄像机,就应该把智能识别的算法集成进去。目前不少厂商都推出了相应的智能卡口摄像机,建议政府应该大力推广,在老卡口摄像机更新换代的时候使用这类智能卡口摄像机进行替代,为未来大规模进行视频结构化做好准备。
3.双目等特种摄像机的开发,突破平面图像特征的局限,得到更精准的三维系信息,如人体数量,高度,物体长度等。类似的产品适合应用在重点区域,符合国内目前严峻的反恐形势。
4.物联网等更多感知技术的应用,本文虽然主题是视频大数据,但在业务的发展中,也积极倡议除了视频外,融入更多的物联网感知技术,如RFID技术等,作为视频结构化信息的一个有效补充。
总而言之,对于视频大数据的产业发展,一句话来总结:前途一片光明,同志仍需努力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03