京公网安备 11010802034615号
经营许可证编号:京B2-20210330
谈到中国P2P网贷平台发展面临的障碍时,很多人言必称个人信用体系缺失。理由是,这使得平台难以进行线上信贷审核。他们认为,P2P的未来取决于央行个人征信系统的建立,且个人征信主要是信用记录的追溯性搜集,核心在于建立个人“信用档案”、形成个人信用报告。诚然,在美国著名P2P平台的发展历程中,完备的个人信用体系的确功不可没,但这并不是其壮大的唯一因素,个人信用报告也不应是P2P征信的全部。个人信用体系只是个人征信体系的一环,基于大数据前瞻性应用的平台征信,才是P2P平台发展的核心竞争力。
如果P2P平台的数据来源仅靠个人信用体系,就无法打造自身的核心竞争力,单纯依靠个人信用报告的信贷机构,也根本无需发展成网络借贷机构。
实际上,基于大数据的前瞻性应用,网络借贷平台有望实现两大突破,这也构成其相对传统商业银行真正的核心竞争力。
其一,网贷机构通过挖掘及时、准确、海量的网络数据,能更真实地反映客户当前及未来的还款能力和还款意愿,提高信贷服务的覆盖面。完全基于个人征信系统进行授信的个人信用报告,只能反映借款人的历史信用记录,无法反映当前及未来信用的真实情况;另外,个人信用报告只能反映拥有个人信用记录客户的信用信息,可实际上很多人在个人信用体系中没有任何信用记录,这些“漏网”的客户就无法获得融资。
其二,银行的审核严格程度与贷款便捷性往往存在负向关系。商业银行在服务借款人时,要经过较长时间进行严格的信贷审核后,才能对客户的贷款申请进行答复。而过于快捷的信贷审核流程,又可能意味着银行对风险把控不严。但网络贷款机构可通过分析客户的网络搜索记录,更真实有效率地预测借款人的借款需求,有望在强化风险把控能力的同时,提高信贷的便捷性。
互联网时代,贷款机构的信贷决策必然将越来越依赖于高频的互联网数据。在具体应用时,一定要保证有足够多的数据,数据的来源也应多样化,可来源于公检法机关、商业银行,也可来源于互联网渠道。在此基础上,更重要的是对数据进行细致精准的分析。目前,很多P2P平台缺乏的不是数据,而是对数据的恰当处理,这就需要构建合适的计量模型对数据进行有效的量化分析。
更精准的数据分析模型能极大提高平台的竞争力。具体而言,模型有效性的提高,能提高平台甄别借款人的效率,降低投资者面临的信贷风险,这样投资者对贷款收益的要求就会降低,平台也能降低放贷利率,从而推动平台规模的快速扩张。
如果说目前中国金融体系还处于“有钱的人才能借到钱,没钱的人永远借不到”的金融1.0时代,那美国个人信用体系的健全使其早已进入了“有信用但没钱的人也能借到钱”的金融2.0时代。而互联网金融企业,正引领美国进入更具前瞻性的金融3.0时代,这一时代的贷款机构能更加有效地将资金提供给具有真实还款能力以及还款意愿的个人。
换言之,个人信用体系的建立能助力中国金融体系从金融1.0时代进入金融2.0时代,大数据的前瞻性应用则可推进中国金融体系弯道超车,迈进金融3.0时代。由此看来,我国有必要开放P2P平台自身个人征信牌照的申请,以充分利用平台大数据应用的正反馈机制,提升信贷服务的覆盖面与效率。
via:财经国家周刊
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09