京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解析:2015年大数据发展的八大趋势_数据分析师
随着数据量爆炸性地增长,大数据技术的发展也达到了前所未有的新高度。2015年,大数据仍将保持这一快速增长势头。Informatica执行副总裁兼首席营销官Margaret Breya女士预计,在新的一年以及更远的将来,将有八大主要趋势主导大数据技术发展领域。
1、2015年是“数据探索年”:一个数据探索的新纪元正在开启。正如哥伦布开启的大航海时代、伽利略开启的宇宙探求时代,以及昔日加利福尼亚的掘金热潮,今天我们的生活与工作正在被数据层层包围。个人与企业都在不断地创造海量数据,想从中有所发现犹如大海捞针或山中探宝。在新的数据掘金大潮中,拥有数据量的多少不再重要,关键是如何利用这些数据。在2015年这一数据探索年中,企业如何利用数据以及将数据转化为有价值信息的速度,才是成为领导者的决定因素。
2、大数据带来大责任:大数据的指数级增长,以及以SMAC、物联网、可穿戴设备为代表的数据源的迅速增加,必定会带来相应的社会冲击。新的一年里,关于数据责任必将展开一场新的战争。现实生活中,全世界75%的数据是由消费者创造,而企业拥有其中85%的数据。虽然数据产生量之大可谓前所未有,但是要想从消费者行为数据中获得收益,企业必须创建相应的战略,例如如何保证数据的清洁、安全,并能为企业发展提供持续动力。
3、数据泄露泛滥:2015年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,新的一年里,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。
4、云分析大行其道:企业如果要获得竞争优势,就必需善于利用手中的数据,并迅速形成明智的决策。卓越的决策出自能够驾驭大数据的企业。
5、以数据为中心的解决方案与应用的兴起:世界已经不再将应用作为独有的优势,相反,数据则能够带来在B2B和B2C领域内确立独特优势的关键点。在数据管理中,以数据为中心的模式将会取代传统以应用为中心的模式。
6、数据方针:人们对于自己创造的数据将拥有更大的权利。这也催生了我们对如何处理原有数据的进一步关注,例如在公民去世后,他们留下的数据如何处理,以及如何管理子女的数据等等。关注这一领域的企业将获得与众不同的优势,而实现这一构想,则需要建立一套强大的数据管治战略。
7、CDDMO(首席数据驱动市场官)的出现:希望能够同自己的客户取得双赢的企业明白,数据优先的战略化思维是成功的关键。因此,企业需要借助首席数据驱动市场官杰出的能力。
8、数据质量是BI(商业智能)成功的关键:采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04