
大数据将给我们带来什么_数据分析师
大数据的概念,去年才刚刚听到并有所了解;但大数据的话题,从去年开始说到今年,真的就没有停止过。我们说,要积极推进大数据在政府统计中的应用,是因为大数据已经并还将将对政府统计工作带来诸多重大影响。
首先,大数据将对政府统计的唯一性乃至共识性产生极大挑战。政府统计在反映国情国力方面的主体地位,既是法律赋予的,也是客观形成的。因为长期以来,没有任何主体有义务有必要有能力,对经济社会的宏观发展情况进行统计监测。比如商品价格,即使一个企业的规模再大,也只能掌握本企业经营的各种商品或服务的价格,而很难也没有必要把其他的价格信息尽收眼底。但随着大数据时代的到来,政府统计部门不再是唯一的海量数据的拥有者。互联网上每时每刻生成了大量的交易和价格信息。在阿里巴巴公司的淘宝网上,许许多多的店主开了许许多多的网店,经营着许许多多的各种各样的商品。于是,一个综合性的淘宝价格指数就应运而生。虽然商品的种类大大少于我们的CPI,虽然这些商品的价格对市场上全部商品的价格未必有代表性,虽然确定权重的依据也仅仅是来自在这个网上购物的群体及行为,但其毕竟是在一个规模越来越大的总体基础上生成的,毕竟有实时产生的大量基础信息做基础,毕竟有越来越多的人关注、了解和参考这个不断变化着的指数。随着大数据的规模不断扩大,或许会不断应运而生一个又一个“淘宝”指数。政府统计是顺其自然、乐见其成呢,还是因势利导、为我所用呢?我们需要在实践中尽快找到答案。
其次,大数据将对政府统计的生产方式和工作流程产生重要影响。大数据生产的主体不一,来源更日趋多元,不同内容和形式的大数据也标准各异。是让大数据的生产者执行统一标准、或是按统一标准进行加工,还是由政府统计把数据拿来之后再做标准化处理?以普查为基础、抽样调查为主体的政府统计,长期以来都是在通过普查掌握总体的基础上,对一定规模限额以上的单位全额调查,对以下的单位进行抽样。但符合大数据概念的交易记录,无论是成交额、成交量,还是各类商品的价格,都是做为一个总体已经存在的。你拿还是不拿,数据就在那里。我们应该怎样拿、怎样抽呢?虽然统计四大工程实现了一套表联网直报,但各级政府统计机构依然要对本地区的数据质量各负其责。而大数据背景下,总体数据或既包括不同地区数据,但又未必能对各地有代表性。面对这种情况,各级统计机构又当如何分工合作呢?
第三,大数据将对政府统计的信息化建设提出更高的要求。从数据搜集到数据处理,结构化与非结构化、标准统一与标准各异、只面对样本与面对庞大的总体,差异无疑是巨大的,对后者的搜集和处理难度也明显大于前者。大数据既包括结构化数据,但更多的是非结构化数据,如图片、视频、文字。如何将这些非结构化数据进行结构化处理,是政府统计信息化建设中要面对的一个重大课题。而“大数据”顾名思义,最大的特点就是“大”。对每时每刻产生的巨大海量网上交易记录,对每一笔成交的数量、金额、价格,是拿过来再处理,还是处理了再拿过来?这也是数据搜集和处理中的一个现实问题。此外,利用搜索引擎,进行关键词搜索,是直接照搬后台的每一条搜索记录,还是由网络公司进行开发加工后提供半成品?这也既涉及技术手段,还关乎制度方法和法律法规。当然,除了搜集、处理、存储过程中的技术手段外,设备、网络、平台等与应用大数据相适应的硬件设施及环境更是不可或缺的。
此外,由于大数据实时产生、形式多样,也会推动政府统计的数据发布工作提高时效性,丰富发布的内容和形式;由于政府统计应用大数据,需要大数据的生产者提供第三方信息,这也需要在相关法律细则中予以明确和强调;由于应用大数据需要更多懂数据懂技术的人才,加强队伍建设、引进和培养复合型人才也已经迫在眉睫……大数据是一场大变革。应对大数据带来的挑战,已经不是未雨绸缪,而是已经迫在眉睫了。而抓住机遇,顺势而为,中国统计就将迎来一个新的大发展大进步。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23