京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2015年八个数据中心的技术的革新_数据分析师
2015年是新技术成熟的一年,IoE、混合云、大数据技术的逐渐商用使得数据中心的运行效率更高。
在2014的时候,市场在商业预算上有了新的发展,如云平台,大数据等新技术和先进的分析方法使得商业市场又找到了盈利点。
因此,2015将带来什么?下面有八个数据中心的技术的革新。
1.融合系统。根据需求自己定制的服务器。在IT分工越来越明细的今天,传统的大一统服务器系统已经不能适应所有的数据中心需求,可能有的数据中心需要高密集的并行运算,这样它们就需求扩展大量的GPU集成运算,传统的服务器显然并没有考虑这一点;有的数据中心主要是做数据储存的,这意味着什么,在诸如存储扩展方面有特别的需求的数据中心,可以自由搭配扩展更多储存的服务器,包括可扩展NAS等等。
2.网状结构网络。网状结构网络就是我们上一篇提到的现有东西和南北网络存在性能瓶颈,通过增加中间交换层来进行改善。大多数企业仍采用分层网络因为它支持用户在一个南北网络流量模式的网络来访问具体应用。网状结构网络这种扁平化的网络拓扑结构将改善东西和南北的通信。
3.闪存介质的存储。在数据中心的运算瓶颈里,往往不是CPU,内存或者网络速度,而是储存。储存性能改进的非常明显,其中最明显的是采用Flash介质的储存,这里面就包括SSD,SSHD,混合加速SAN等等技术。FLASH介质的储存是未来的发展趋势,虽然现阶段在容量和故障恢复方面相比传统的磁盘储存,FLASH有它自己的缺点,但是科技的进步是巨大的,很快FLASH储存将会大规模进入数据中心。
4.混合运算。不同的工作需要不同的资源,传统x86的计算能力在日益扩展的数据计算面前显得狭隘,CPU的运算已经不能满足大规模的单一并行运算。像Nvidia.AMD公司的图形处理单元GPU\APU,或Java卸载引擎,会部分替代CPU架构的运算工作,如并行编码,转码等等,这些效率比x86的CPU运算快上许多。
5.混合云技术。2015年估计是混合云技术大规模扩展的一年。混合云技术的灵活性可以将工作负载极大的提高。随着虚拟化和混合运算的普及,不同的厂家软硬件产品之间的选择性越来越大,混合云技术就是择其所需,包容扩展。在数据中心中,如何进行混合云技术的扩展将是未来发展的重点。
6.物联网(IOE)。随着数据量的迅速增长,家用设备或者任何其他设备都越来越智能化,甚至包括空调、洗衣机等设备。物联网将是这一切的基础智能化设备的一种升级应用,对于智能建筑,自动化车间,先进的跟踪和客户分析,物联网是至关重要的。
物联网将会采集海量的数据,这些大数据看起来很乱,但是对于商业大数据分析却是一种分析的基础,这也是物联网大规模扩展的一个因素。
7.能源的使用效率提高。从绿色节能的观点来看,可持续的能源和提高能源转化效率是每一个公司应该有的目标。
针对现代数据中心的冷却方法,使用尽可能少的能量。在非高密集运算的环境,服务器的处理器可以从性能比的角度去考虑使用低功耗的处理器, 这些处理器往往比相同等级型号的普通处理降低了50%的功耗,这对于服务器散热和提高性能比会有很大的帮助,同样的,在设备的电源等部件的选用角度,也需要加入能耗比的考虑。
8.与业务对齐。更好地了解什么样的商业将确保业务是否可行的和有效的。
从商业的角度来看,找出项目和目标的最大约束和建议将是决策的重要部分。随着世界的变化,业务已经被视为企业的核心部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16