京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网大数据只是大数据的起点_数据分析师
昨天中国互联网协会数据分析研究工作组在中国互联网大数据年会成立,我作为研究工作组的专家成员做了一个简短的分享。分享的内容,放到朋友圈里面已经有106个“心”了。在此,把分享内容放到公众号。
Part One移动大数据的重要性和特殊性
这里面有三个点值得我们关注:
第一,整个互联网往移动端发展,得移动互联网的天下;
(1)2014年上半年手机网民占所有网民的比例是83%以上,现在这个比例会更高;
(2)很多大型互联网企业的pc走势都是平缓的,而移动端则增长迅猛;
(3)刚才易车的朱总提到,易车60%以上的销售线索来源于移动端。
第二,移动互联网的发展是大数据发展的最重要驱动力;
为什么前几年不叫大数据,这几年大数据才火起来。我们认为最重要的一点是互联网尤其是移动互联网的发展。
我们举一个极端点的例子。路上的摄像头是不是采集很多数据,但是如果大家都用这个方法来采集,数据采集和处理门槛就非常高。因为他们的存储成本和处理成本都非常高。
而移动互联网让我们数据采集的成本大大降低,同时又有一个非常好的反馈渠道,即数据采集分析挖掘后,可以反过来给用户push相应的服务,数据采集和应用服务是打通的。
第三,移动大数据的特殊性
如果在pc互联网时代,你能拿到的数据有限。由于移动互联网是碎片化的时间使用,从数据角度来看,移动数据种类多、更容易代表一个人的完整行为和兴趣。
同时,手机跟pc最大的不一样就是屏幕。由于屏幕小,你不能什么东西都提供给用户。更需要通过大数据来了解用户的需求,投其所好。
Part Two 大数据如何在企业运营管理落地
大型的互联网企业其实做大数据已经比较领先了,但传统企业更需要也更迫切了解大数据如何落地。这方面如果要展开,可能要探讨两做天,所以就不详细展开了。
这里面想跟大家探讨的是,如果企业想开展大数据的工作,第一步应该怎么做?
当然是组建团队。组建团队的时候,有三个问题:
1.大数据团队领导人应该向谁汇报?
我的建议是越高层越好,越偏业务越好。有很多企业说重视数据,但老板都不看,这样根本用不起来。所以数据团队一定要能直接向高层汇报。那么是向COO汇报还是想CTO汇报呢?我的经验觉得向COO汇报更为合适。因为数据要为业务服务,为运营服务,数据从业务来,应该循环支撑业务。
2.大数据团队应该如何招聘什么样的人才?
不仅仅是平台技术类、数据处理类人才、还需要数据分析、数据挖掘、算法工程师、数据产品经理,还有一个往往被忽略的时候用户研究经理。因为大家总觉得有了大数据就不需要面对面的用户做深入的了解了。我觉得这是一个非常错误的看法。因为大数据往往不容易看到用户态度和心理层面的东西。另外,在很多产品没有上线前,要测试各种版本的效果,需要做用户调研,也是非常需要用户研究经理来帮忙。
3.大数据团队应该如何和企业各业务部门协同工作?
很多企业会往往出现这样一个现象,业务说数据人员不懂业务,闭门造车;数据人员说业务人员不懂数据,不懂统计学,不懂方法论;所以两者合作起来就很麻烦。所以,对于大企业,大数据团队需要一个公司级的独立数据部门,也需要每个业务部门配几个分析师形成分析中心。公司级的数据部门需要和业务部门的数据分析师一起合作更好的合作。
Part Three 大数据更广泛的应用
中国互联网协会的李部长问我,今天很多朋友谈大数据都是为广告和营销服务,是不是大数据就只能应用在这方面呢?其实,我很早之前就思考这个问题,近两年答案越来越明显了。
大数据如果作为商业模式中的一个引擎,即大数据作为产品的一个引擎,就有可能促进商业模式的升级。打个比方,把一个传统的商业模式比作一辆汽车,这辆汽车的引擎是2.0的排量,如果你在设计商业模式的时候把大数据很好的融入商业模式中,那么这辆2.0排量的汽车就有可能升级为2.0T,即变成带涡轮增压的发动机,动力将更猛。
大数据在很多领域,尤其是智能家居和健康医疗有非常好的应用:
♦ 当你发现,你家里的冰箱可以告诉你,经过分析,你应该去买胡萝卜了,你可以在电冰箱的屏幕下单或者用手机APP直接下单;
♦ 当你发现,你家里的灯光可以根据你的心情来调整,或者你可以通过手机APP来调整;
♦ 当你发现,你可以通过手机APP远程的监控身在老家的父母的血压,及时预警;
♦ 当你发现,你可以通过手机APP查看安装在老家的摄像头,看到父母的生活情况,而且摄像头可以给你报警,如果你的父母摔倒了,你可以立即采取行动。
所以,互联网大数据只是大数据的起点,未来还有很多想象空间,我们作为数据从业者,觉得还是非常幸运的。谢谢大家。
文:傅志华
关于作者:傅志华先生曾为腾讯社交网络事业群数据中心总监以及腾讯公司数据协会会长。在腾讯前,曾任DCCI互联网数据中心副总裁。傅志华先生现就职于某美国上市互联网公司大中心,同时任中国信息协会大数据分会理事和中国互联网协会数据分析研究组专家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16