京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的三大迷思_数据分析师
现在很多有关大数据的讨论都是围绕着数据收集进行的,但是除非内外部用户能够方便地消费这些数据,否则它们将一文不值。
Michel Guillet 来自提供数据可视化的 Juice Analytics 公司,他认为有些公司在跟大数据打交道时往往会陷入这三大迷思:
迷思1:内部的数据用户需要的是灵活性而非指南
去杂货店的时候你有没有遇到东西太多不知道该选什么的情况?
大数据也一样。事实上,尽管你的主管也许表达了对更多数据(更多的指标、更多裸数据访问、更多图表等)的兴趣,但那只是一种不确定的表示,而不是对更强劲分析的兴趣。这些人不确定究竟要这些数据要干什么,因此他们认为也许把全部数据要过来更好。
用户希望被引导到答案去,他们希望展示的数据能消除不确定—而不是产生更多的问题,哪怕为了回答在数据上面多花几分钟这些人都不愿意。
要在报表设计上面多花点功夫,给用户指出一条清晰的探索路径,这才是正道。
迷思2:我们的客户没有要求
客户虽然未必直接要求数据产品,但是间接的表达是会有的。在他们对你、你的销售或者支撑团队的只言片语中可以感受到:
• 跟业界平均相比如何?
• 我怎样才能更频繁地访问我的数据?
• 我组织的其他人可以访问吗?
• 我得给老板做个月报表。
客户很少会在项目一开始就要求大数据报表,但到最后总会提出这个要求。如果在设计时将这一点铭记于心,你就可以更好地处理系统需要收集的东西并理解其原因。
迷思3:客户的数据我不能收钱
你卖的不是数据,而是合并进分析中的剖析、指标、算法和展示,这些提升了数据的价值。不要把数据产品定位为“容易访问裸数据”,而是可以解决问题的解决方案。
你能不能轻易地把客户的数据与其他客户群的进行比较?有没有第三方来源来进行基准比较?
尽管客户的确拥有自己的数据,但你可以通过特定行业指标、客户基准以及建议等提供增值服务。
大数据可以成为你公司的竞争优势,前提是避免炒作,并形成一套有目标可量化的大数据收集与使用计划。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04