京公网安备 11010802034615号
经营许可证编号:京B2-20210330
社交媒体的大数据并不可靠_数据分析师
如今,科学家们正越来越多的把目光转向社交媒体,以研究线上及线下的人类行为,例如预测夏季股票市场的大波动。一些数据处理专家指出,使用该种方法处理数据时,研究者们须警惕超大量社交媒体数据背后可能存在的严重缺陷。
错误的结果可能产生严重的影响:每年,都有上千的研究报告是基于社交媒体上收集而来的数据。麦吉尔大学计算科学学院助理教授Derek Ruths称“这些文章中有好些被用来通报和决断公众,行业及政府的投资决策”。
卡内基梅隆大学软件科学院的合作作者Jürgen Pfeffer则说,“并不是所有打上“大数据”标签的东西就都很好”,他指出许多研究者都有或是希望有如此的前提——即只要数据足够多,他们就能修正任何可能产生的偏差。“然而,行为学研究中的一句老话说的好:了解你的数据”。不过,社交媒体作为数据源之一吸引力实在惊人。“人们想要了解世界上正发生着什么,这无疑是快速的跟进办法。”以2013年的波士顿马拉松爆炸案为例,Pfeffer在两周内收集了两千五百万的相关tweets(推特)。“你能了解百万计人的行为——还都是免费的。”
数据过滤与SPAM
一篇发表在《科学》杂志上的评论中,Ruths和Pfeffer强调了可能导致社交媒体数据失真的若干因素,及它们的解决办法。
包括:
不同社交媒体平台吸引不同的受众——比如,Instagram对18~29岁间的成年人吸引力最大,包括非裔美国人,拉丁人,女性和城市居民,而在Pinterest上,占主导地位的则是那些家庭年收入超过0,000,25~34岁的女性用户。Ruths和Pfeffer指出,研究人员很少能够知晓,更谈不上正确对待这些内含的采样偏差。
社交媒体研究所使用的公开数据并不总能准确反映平台的总体状况——研究者们关于网站建立者如何过滤他们的数据源常常一头雾水。
社交媒体的设计通常会影响用户的行为,从而改变所测量的数据。比如,Facebook没有“不喜欢”的按钮,这就使得负面内容相比于正面的“喜欢”更难被侦查到。
大量SPAM(垃圾邮件发送者和机器人)通常在社交媒体上伪装成普通用户,也被错误地纳入了很多人类行为测算和预测。
研究者们还经常只报告来自于易于分类的用户,主题和事件所得出的结论,这就使得新的方法看起来更加准备。例如,在推知Twitter用户的政治取向时,只取得了65%的准确率——即使研究(侧重于政治活跃用户)声称有90%的准确度。
解决方法
Ruths和Pfeffer指出,以上很多问题都有显而易见的解决方法,这些方法被广泛地用在诸如流行病学,统计学和机械学等领域。
Ruths说,“这些问题的共同点就是,需要研究者们在分析社交媒体数据时,能更加敏锐地感知数据本身。”
社会学家应对此种挑战的技术和标准已经十分纯熟了。Ruths说,“1948年,臭名昭著的“杜威击败杜鲁门”报纸标题就来自于电话调查,它最终在采样上低估了杜鲁门的支持者。这并不是在抹黑民意调查,正是那次显而易见的错误导致了今天日益复杂的技术,更高的标准,以及更加准确的民调。如今,我们站在与当年类似的技术发展拐点上。通过解决面临的问题,我们才能实现基于社交媒体的研究所展现出的巨大潜力。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06