京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2015年将面临的八大数据中心技术革新
2015年是新技术成熟的一年,IoE、混合云、大数据技术的逐渐商用使得数据中心的运行效率更高。
在2014的时候,市场在商业预算上有了新的发展,如云平台,大数据等新技术和先进的分析方法使得商业市场又找到了盈利点。
因此,2015将带来什么?下面有八个数据中心的技术的革新。
1.融合系统。根据需求自己定制的服务器。在IT分工越来越明细的今天,传统的大一统服务器系统已经不能适应所有的数据中心需求,可能有的数据中心需要高密集的并行运算,这样它们就需求扩展大量的GPU集成运算,传统的服务器显然并没有考虑这一点;有的数据中心主要是做数据储存的,这意味着什么,在诸如存储扩展方面有特别的需求的数据中心,可以自由搭配扩展更多储存的服务器,包括可扩展NAS等等。
2.网状结构网络。网状结构网络就是我们上一篇提到的现有东西和南北网络存在性能瓶颈,通过增加中间交换层来进行改善。大多数企业仍采用分层网络因为它支持用户在一个南北网络流量模式的网络来访问具体应用。网状结构网络这种扁平化的网络拓扑结构将改善东西和南北的通信。
3.闪存介质的存储。在数据中心的运算瓶颈里,往往不是CPU,内存或者网络速度,而是储存。储存性能改进的非常明显,其中最明显的是采用Flash介质的储存,这里面就包括SSD,SSHD,混合加速SAN等等技术。FLASH介质的储存是未来的发展趋势,虽然现阶段在容量和故障恢复方面相比传统的磁盘储存,FLASH有它自己的缺点,但是科技的进步是巨大的,很快FLASH储存将会大规模进入数据中心。
4.混合运算。不同的工作需要不同的资源,传统x86的计算能力在日益扩展的数据计算面前显得狭隘,CPU的运算已经不能满足大规模的单一并行运算。像Nvidia.AMD公司的图形处理单元GPUAPU,或Java卸载引擎,会部分替代CPU架构的运算工作,如并行编码,转码等等,这些效率比x86的CPU运算快上许多。
5.混合云技术。2015年估计是混合云技术大规模扩展的一年。混合云技术的灵活性可以将工作负载极大的提高。随着虚拟化和混合运算的普及,不同的厂家软硬件产品之间的选择性越来越大,混合云技术就是择其所需,包容扩展。在数据中心中,如何进行混合云技术的扩展将是未来发展的重点。
6.物联网(IOE)。随着数据量的迅速增长,家用设备或者任何其他设备都越来越智能化,甚至包括空调、洗衣机等设备。物联网将是这一切的基础智能化设备的一种升级应用,对于智能建筑,自动化车间,先进的跟踪和客户分析,物联网是至关重要的。
物联网将会采集海量的数据,这些大数据看起来很乱,但是对于商业大数据分析却是一种分析的基础,这也是物联网大规模扩展的一个因素。
7.能源的使用效率提高。从绿色节能的观点来看,可持续的能源和提高能源转化效率是每一个公司应该有的目标。
针对现代数据中心的冷却方法,使用尽可能少的能量。在非高密集运算的环境,服务器的处理器可以从性能比的角度去考虑使用低功耗的处理器, 这些处理器往往比相同等级型号的普通处理降低了50%的功耗,这对于服务器散热和提高性能比会有很大的帮助,同样的,在设备的电源等部件的选用角度,也需要加入能耗比的考虑。
8.与业务对齐。更好地了解什么样的商业将确保业务是否可行的和有效的。
从商业的角度来看,找出项目和目标的最大约束和建议将是决策的重要部分。随着世界的变化,业务已经被视为企业的核心部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03