
商务智能最大的挑战不是来自大数据
要想从商务智能中获取最大的价值,就需要强大的数据治理能力,这往往从数据定义开始。
IT咨询师Wayne Eckerson说到,诚然,我们处在大数据时代,但从我接触的客户来看,大公司面临的主要挑战是缺乏通用的数据词汇。一个组织就像是毁掉了的巴别塔,各说各的语言,出于不同的目的,数据和性能指标都不一致,定义也不清晰。IT部门和业务单位各说各话,严重影响了运营效率和竞争力。这里面缺少的就是强有力的数据治理项目,把数据作为重要的业务资产来管理。
最大的挑战不是来自大数据
我的客户都是在数据仓库、商务智能和主数据管理等领域有实质投资的数据驱动型公司。但和大家想象的大数据现象不同,困扰很多公司的仍然是小数据,即来自企业资源计划ERP、客户关系管理CRM和其他运行的业务系统的信息。
问题是这些信息碎片化地分散在组织中,每一个业务单位或地域公司都运行、管理着自己的应用程序、系统和客户数据库。虽然独立运行的系统可以帮助业务部门推送个性化的产品和服务给客户,但它会削弱全球数据的完整性、一致性和公司整合资源的能力。最终会影响企业在更广泛的市场的竞争力。
因此,组织应该努力优化本地和全球的流程。这包括建立全球数据标准,给共享数据和流程给出完整的定义,从而更好地管理它们。这要求来自业务部门的销售人员付出时间,与同事合作,共同创造通用的词汇和数据治理框架。
如果处理得当,数据标准既不会限制业务部门,也不会影响服务客户。相反,有良好治理的数据标准能够在业务部门中培养更大的协作。这对想和企业合作的客户来说,是个好消息,长远来看,也是对业务部门有益的。
重建巴别塔的两种方式
当然,要创建通用的数据词汇谈何容易!通常,部署数据治理项目需要两种常用方法,一个是由CEO或其他领导推动的自上而下的行政行为,一个是包含IT项目的自下而上的部署。
通常,在没有统一的数据标准的大公司,缺乏一致的数据会给CEO带来很大的难题,公司甚至无法回答一些最基本的问题,比如“我们昨天的销售业绩是多少?”“我们有多少客户?”或“为什么我们产品的召回率那么高?”CEO,或其他公司领导,会推动数据治理项目,创建和管理数据词汇,并在所有运营系统、BI报表和分析应用程序里推广使用。理想情况下,公司的每一个部门都会推行该项目。
但是,CEO往往会选择走捷径。他们希望一条命令就足以改变整个公司的数据资产管理。因此,他们没有投入变化管理流程,业务部门经理没有机会在项目形态和数据标准本身进行投入。没有中层管理者的足够的支持,数据治理项目很难落地。
自下而上的方法把数据治理程序嵌入到技术项目中,比如部署新的CRM,合规性报表或风险管理系统。通过借力于战略性项目,数据治理建议者能够建立起对精确数据定义和跨业务部门的标准化数据管理流程的支持,最终获得CEO的认可和支持。
例如,我的一个客户是全球医疗设备制造商,它的CEO想要一个绩效记分系统帮助他更好地管理公司,该系统需要很多自动化业务单元,有些还是独立的法人实体。CEO没有直接下达行政命令。但在创建记分系统的过程中,设计团队开发了一个非正式的治理项目,在记分系统指标和潜在的业务名词中获得一致性。团队不得不找到公司每个部门的决策制定者——销售部门、财务部门、人力资源部门等,让他们确定定义、过滤方法和访问权限和数据质量标准。现在,他们不得不监督流程,监控数据质量,管理指标变化。
这个团队现在意识到,记分系统真正的目的和首要的利益不是给CEO提供报表和数据,而是创建通用的词汇,让公司能够在全球业务中使用。公司特别需要通用的数据词汇来和进入市场的更大、集成更好的公司竞争。
要想提高成功的概率,企业需要权衡这两种方法。自下而上的方法如果没有清理数据和保持一致性的行政命令的话,不可能成功。自上而下的方法应该和其他项目联系在一起,通过聚焦数据元素进行部署,让每一个人都认可这件事对企业的价值(或者是对自己的价值)。
只是,一定不要让现状持续下去。现在,数据治理,而不是大数据,是定义数据管理的挑战。成为数据驱动的公司是一件事,对共享术语和指标有通用数据词汇是另一件事。但在今天的信息经济时代,这两者都是必不可少的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10