京公网安备 11010802034615号
经营许可证编号:京B2-20210330
虽然帝都承办了 2008 年奥运会,天朝国民也为此盛事狂欢,但除了金牌数字让人血脉偾张以外,日常体育锻炼和健身还离大多数国人很远。而即使近几年有不少健身房在生活小区周边建立起来,也往往因为上班族时间资源的稀缺以及空间距离带来的不便而让人在办卡后无法形成持续的运动健身习惯。
不过好消息是,随着手机、平板等移动设备因其便携性而成为人体不可或缺的一部分,好的健身内容也可以被装进“口袋”、随身携带,降低了人们持续消费健身内容的门槛,从而有助于形成良好的运动习惯——而线上健身平台“沸腾时刻”想做的就是这样一件事。
简单来说,“沸腾时刻”想通过收集用户身体的数据,用算法为其设计个性化的视频健身课程,替代传统的线下“私教”。
初次使用沸腾时刻时,用户需要手动输入自己的身高、体重、腰围、臀围等信息,让系统对其身材有个基础的判断和了解。但仅有这些数据还不足够系统精准判断,所以采集了基础数据后,沸腾时刻还会要求用户跟着视频完成“体测”环节,以判断用户体能适合从何种强度的训练开始做起。
说到这里,有人可能会好奇:纯线上的视频播放方式,如何得知用户线下“体测”的成绩呢?这正是沸腾时刻很有意思的一点——它会为用户提供可交互的视频课程,让用户跟着视频中的教练完成一系列动作,比如“做 30 秒的高抬腿”,当高抬腿的教学视频播放完后,视频便会暂停并弹出一个表单,让用户填写他在 30 秒内可以完成的高抬腿动作的个数——通过这类数据的收集,系统便可以判断出用户的体能大概在什么样的水平。
当然,这类交互不仅仅限于体能测试的环节,在用户后续的健身过程中,为其配套的健身视频都会不断采取这种交互方式来收集用户的运动数据,以跟踪其锻炼效果,并优化后续为其推送的视频健身课程,让用户可以循序渐进地达到健身目标。这也就是之前所说的,用数据+算法去替代掉原来线下的私教所做的事。
不过,用纯粹的线上方式来做健身教学,除了数据收集这一弱点以外,还有对用户把控较弱的缺点——就像 Coursera 上的视频课程一样,用户辍学的门槛极低,也没有线下的同学和老师氛围来让用户对辍学形成负罪感,而类似的沸腾时刻也极可能面临同样问题。
针对这一点,沸腾时刻的创始人 Rocky 说,通常健身坚持不下去最大的问题就是线下去健身房的不方便性,而他们已经用线上可交互健身视频的方式去减少原来的不便捷性了。除此之外,还可能让人坚持不下去的因素就是视频内容不够丰富,每天练习的都是几乎一样内容,便很容易失去乐趣(曾经跟着视频跳过郑多燕的菇凉们应该深有感触)。
对此,沸腾时刻的做法是,他们在线下和有名的私教合作录制视频课程,目前已经有成百集的内容,可以让用户每天都有不一样的健身视频观看,且这些视频都是个性化定制、符合用户身体需求的。而健身这件事,只要用户能坚持 30 到 60 天,便可以看到自己身材的巨大改变,尝到这个甜头之后用户自然会对健身产生黏性了。
盈利模式上,沸腾时刻现阶段采取初级视频课程免费,高级会员按年卡收费的模式。付费的高级会员可以购买沸腾时刻提供的可穿戴设备(让收集到的用户数据更加精准),并免费到线下健身房进行锻炼(有点类似ClassPass整进散出的模式)。不过 Rocky 认为,和为线下私教导流的方式并不是长期的,他们认为最有价值的还是积累下来的用户健康大数据,未来可以将收集到的用户健康大数据开放给各类厂商进行合作。
团队上,沸腾时刻创始人 Rocky 从美国伊利诺伊大学 MBA 毕业后回国创业,在大学时曾是 CUBA 冠军校队的成员,在中美健身届都积累下了一些资源,因而可以以较低的成本和前央视的节目团队以及国内外的健身、健美冠军教练合作拍摄视频,这也算是其创业的早期优势之一。目前沸腾时刻已经上线试运营一年,最近进行了全新改版,而其 app 也会在近日推出。团队也已拿到琴江创投千万人民币级别的天使投资。
至于类似的产品,国外和沸腾时刻在线上或是线下有些相同之处的公司有FitStar、Fitmob,国内有“我开始”等。而从 2014 年起,从 P2P 角度、线下健身房整合角度、私教角度等等方向切入的各类围绕运动健康服务也不断涌现,比如练练、开练、约教练等,估计 2015 年还会有更多玩家涌现,我们会持续保持关注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29