京公网安备 11010802034615号
经营许可证编号:京B2-20210330
安全真实考验大数据时代_数据分析师
在刚刚过去的2012年,“大数据”的概念在商业领域突然走红。但另一方面,大数据也引发了这样的担忧,商家在使用这些海量信息的同时会不会造成消费者信息泄露。
2012年12月28日,十一届全国人大常委会第三十次会议审议通过关于加强网络信息保护的决定草案。关于个人信息保护,决定草案明确了一个重要原则,就是国家保护能够识别公民个人身份和涉及公民个人隐私的电子信息。同时,草案还对个人信息收集者的义务作了多项规定。对于过去一年被人们热议的“大数据”而言,这个决定草案可谓正当时。
大数据的价值何在
在全球500强企业中,90%以上的重要投资与经营决策都取决于充分的数据分析支持。中国商业联合会数据分析专业委员会会长邹东生认为,大数据时刻影响到企业的整体运营链的管理,从前端的管理,到后端的供货商、物流等都受到深刻的变化和影响。
美国政府则在2012年3月29日宣布投资两亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。
中国商业联合会副会长刘建沪介绍说,随着互联网的快速发展,中国的电子商务企业纷纷组建了数据分析部门。大数据的市场有多大?中央财经大学中国经济管理研究院博士张永力说,国外大数据行业约有1000亿美元的市场,而且每年都以10%的速度在增长,增速是软件行业的两倍。
据悉,为迎接大数据的到来,2011年10月,工信部确认京沪深杭等5城市为“云计算中心”试点城市。而真正的问题或许不在于怎样建设“云计算中心”。国家信息中心常务副主任杜平直言不讳:“应对大数据的到来,需要不断建基础设施,但是建了干什么,有些数据需要存储,也有很多数据可能不需要储存。”
事实上,目前企业在还没有能力深度挖掘出数据的价值之前,存储大量的数据,进行大规模的投资建设,的确有“浪费”之嫌。
数据真实性与安全性考验
邹东生坦承,大数据行业尚处在跑马圈地阶段,行业乱象不可避免。他介绍说,虚假资质、服务不规范、质量控制不严格等是这个行业存在的主要问题。
在中国改革基金会国民经济研究所副所长王小鲁看来,这个行业的真正考验来自数据的真实性。王小鲁说,数据分析的基础首先应该是准确的基础数据,“打个比方,数据分析就像有米下锅做饭,米的质量如何,可能对做出来的饭有决定性的影响。”
邹东生介绍说,在采集、整理、存储、传输的过程,人为因素很多,可能会有一些所谓的“难看”的数据被丢弃。更有甚者,有些数据可能会在这个过程中被篡改。
除了搜集企业内部的数据容易存在失真问题,企业对外部数据的利用也是真伪难辨。邹东生指出,这些外部数据多是通过公开渠道或者商业渠道获得的数据,一方面是真伪难辨,另一方面是这些数据多是统计分析加工后的呈现,如果照搬,往往会造成误差。
随着大数据时代的到来,个人数据安全也一直备受社会关注,从密码泄露到涉嫌恶意收集用户隐私,数据安全问题挑战着相关行业的商业道德底线。邹东生坦言,“大数据”里肯定会涉及到用户信息,甚至是相对隐私的数据的分析问题。
从“大数据”到“大分析”
大数据存储技术的提升,造成整个社会数据开始以几何级数递增,但数据本身不能带来价值,它的真正价值在于对其精准的分析。正如中国商业联合会数据分析专业委员会数据中心主任赵兴峰所言,大数据时代,数据是企业未来发展的“金库”,“但是,如果企业只是简单存储数据,而不是分析数据,尽快挖掘‘金库’里的‘黄金’,它仍然可能死在半路上。”
从“大数据”到“大分析”,赵兴峰认为,除了要避免盲目建设,国内的企业还要避免这样一个误区,就是把大量资金投入到可见的计算机硬件和软件上,而往往不愿意在“人”身上做投资,“现在人才市场上能够胜任数据深度分析和挖掘的人才都是凤毛麟角,即使能够找到,也是‘昂贵’的,可能无法留住。所以企业需要着重培养这方面的人才。”
而实现从“大数据”到“大分析”的转变,数据的真实性是前提,数据的安全性是发展命脉。如何保证数据的真实性?王小鲁认为,需要充分利用分析者的智慧去质疑,透过现象看本质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12