京公网安备 11010802034615号
经营许可证编号:京B2-20210330
安全真实考验大数据时代_数据分析师
在刚刚过去的2012年,“大数据”的概念在商业领域突然走红。但另一方面,大数据也引发了这样的担忧,商家在使用这些海量信息的同时会不会造成消费者信息泄露。
2012年12月28日,十一届全国人大常委会第三十次会议审议通过关于加强网络信息保护的决定草案。关于个人信息保护,决定草案明确了一个重要原则,就是国家保护能够识别公民个人身份和涉及公民个人隐私的电子信息。同时,草案还对个人信息收集者的义务作了多项规定。对于过去一年被人们热议的“大数据”而言,这个决定草案可谓正当时。
大数据的价值何在
在全球500强企业中,90%以上的重要投资与经营决策都取决于充分的数据分析支持。中国商业联合会数据分析专业委员会会长邹东生认为,大数据时刻影响到企业的整体运营链的管理,从前端的管理,到后端的供货商、物流等都受到深刻的变化和影响。
美国政府则在2012年3月29日宣布投资两亿美元拉动大数据相关产业发展,将“大数据战略”上升为国家意志。
中国商业联合会副会长刘建沪介绍说,随着互联网的快速发展,中国的电子商务企业纷纷组建了数据分析部门。大数据的市场有多大?中央财经大学中国经济管理研究院博士张永力说,国外大数据行业约有1000亿美元的市场,而且每年都以10%的速度在增长,增速是软件行业的两倍。
据悉,为迎接大数据的到来,2011年10月,工信部确认京沪深杭等5城市为“云计算中心”试点城市。而真正的问题或许不在于怎样建设“云计算中心”。国家信息中心常务副主任杜平直言不讳:“应对大数据的到来,需要不断建基础设施,但是建了干什么,有些数据需要存储,也有很多数据可能不需要储存。”
事实上,目前企业在还没有能力深度挖掘出数据的价值之前,存储大量的数据,进行大规模的投资建设,的确有“浪费”之嫌。
数据真实性与安全性考验
邹东生坦承,大数据行业尚处在跑马圈地阶段,行业乱象不可避免。他介绍说,虚假资质、服务不规范、质量控制不严格等是这个行业存在的主要问题。
在中国改革基金会国民经济研究所副所长王小鲁看来,这个行业的真正考验来自数据的真实性。王小鲁说,数据分析的基础首先应该是准确的基础数据,“打个比方,数据分析就像有米下锅做饭,米的质量如何,可能对做出来的饭有决定性的影响。”
邹东生介绍说,在采集、整理、存储、传输的过程,人为因素很多,可能会有一些所谓的“难看”的数据被丢弃。更有甚者,有些数据可能会在这个过程中被篡改。
除了搜集企业内部的数据容易存在失真问题,企业对外部数据的利用也是真伪难辨。邹东生指出,这些外部数据多是通过公开渠道或者商业渠道获得的数据,一方面是真伪难辨,另一方面是这些数据多是统计分析加工后的呈现,如果照搬,往往会造成误差。
随着大数据时代的到来,个人数据安全也一直备受社会关注,从密码泄露到涉嫌恶意收集用户隐私,数据安全问题挑战着相关行业的商业道德底线。邹东生坦言,“大数据”里肯定会涉及到用户信息,甚至是相对隐私的数据的分析问题。
从“大数据”到“大分析”
大数据存储技术的提升,造成整个社会数据开始以几何级数递增,但数据本身不能带来价值,它的真正价值在于对其精准的分析。正如中国商业联合会数据分析专业委员会数据中心主任赵兴峰所言,大数据时代,数据是企业未来发展的“金库”,“但是,如果企业只是简单存储数据,而不是分析数据,尽快挖掘‘金库’里的‘黄金’,它仍然可能死在半路上。”
从“大数据”到“大分析”,赵兴峰认为,除了要避免盲目建设,国内的企业还要避免这样一个误区,就是把大量资金投入到可见的计算机硬件和软件上,而往往不愿意在“人”身上做投资,“现在人才市场上能够胜任数据深度分析和挖掘的人才都是凤毛麟角,即使能够找到,也是‘昂贵’的,可能无法留住。所以企业需要着重培养这方面的人才。”
而实现从“大数据”到“大分析”的转变,数据的真实性是前提,数据的安全性是发展命脉。如何保证数据的真实性?王小鲁认为,需要充分利用分析者的智慧去质疑,透过现象看本质。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28