京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的难解悖论:隐私与货币化何以两全?
人生的乐趣在于不确定性。如果大数据作为一种技术,(数据分析师)在未来统治了人们的工作和生活,那么我们每个人将都是赤身裸体的连皮肤可能都要是失去了!我们将进入一个确定的、可预测的世界。这是我在昨天参加完百度BIG Talk第三期《大数据开启大未来》的科技对话活动之后,最为直接的想法。来自美国的彭特兰教授是这次对话的灵魂人物,此君名声在外,不只是因为他自己自 身是MIT媒体实验室的负责人,在大数据领域属于一流的学者,他的学生也都是人中翘楚,其中就包括谷歌眼镜的发明人。
去之前,稍微做了点功课。因为我始终对大数据技术那种宣称的无所不能持有怀疑和谨慎的态度。因为我认为过度的技术浸入人类的生活和工作,并非完全利 好。尤其可穿戴产品,人类的所思所想所行,都变得越来越透明。以至于很多商人在欢呼,传统的消费者行为学理论终于可以寿终正寝,在他们看来,作为消费者的 我们不再是黑盒子。
因此,我比较关注彭特兰教授有关隐私方面的演讲。因为在大数据统治的数字化社会,我并不认为做一名数字透明化的顾客会是多么幸福的事情。
彭特兰教授在演讲中提到的一个观点,我认为值得整个社会深思,他说我们不应该把个人的数据交给一个以盈利为目的的商业公司。在彭特兰教授的观点中,他认为作为个人而言,在大数据时代,应该具有四种权力:
1)被通知权:能够明确的知晓自己的数据在何时、何地、以何种方式会被采集
2)知情同意权:个人明确的知道数据将会被如何利用,并且必须经由本人同意
3)审核:在这里主要是指政府法律机构负责审核
4)撤销权:个人随时可以销毁自己的个人数据资产。
通俗的说,就是彭特兰教授称之为“数据上的新决议”三原则:你有权利拥有你的数据、你有权利掌握数据的使用、你有权利摧毁或者贡献你的数据。
所以在他的解决方案中,他提出了一个可信网络的概念,借用的是SWIFT(环球银行电信协会)在全球银行间建设的银行间通信和实时清算系统。同时, 他还提出了一个“开放个人数据商店”的模型,"数据分析师"在这个模型中,这是一个唯一的存储个人数据的地方,在面对外部访问请求的时候,给出的最终答案,而不是数据本 身。
当然,运营和管理这样的一个个人数据商店,并非简单和容易的事情,尤其是在全世界范围内统一起来更是几无可能。在这里面既涉及到各国政府管理和服务 本国公民的问题,也涉及到全球的国际公司巨头们的巨大商业利益问题。所以笔者对彭特兰教授的这个开放个人数据商店能否真正解决个人的数据隐私保护持有保留态度。
教授的理想是个人的数据资产不能交给商业公司。
但是冷酷的现实则是,除了商业公司对我们的个人数据资产抱有浓厚的兴趣之外,恐怕很难找到一个跳出五行外不在佛门中的人和机构,对此持有持续的兴趣和动力。(当然,政府机构也对此抱有极强的兴趣,但是那是另外一回事)
所以对于个人而言,更为现实的问题,则是如何合理的货币化自己的个人数据资产的问题。这一点,彭特兰教授在演讲中,也有提及。他指出,建立一种机制,鼓励人们分享和贡献数据,既能给自己,也能给他人和整个社会带来好处。
对此,我深表同意。比如如果每个司机人都愿意实时的分享自己驾驶车辆的速度、位置、刹车、加速的情况,这样整个城市的路网,都实现了动态的监控和运营,或许对于改善所有司机的出行效率都有好处。
但是重要的问题是,要有足够的经济激励,刺激个人在信任安全可靠的前提下,有意愿分享自己的数据。显然,有机构或者组织愿意直接出资购买个人的这些数据是一种最为直接的商业模式,但是在现实生活中,第三方付费的模式则更为普遍。
不过有次带来的新问题则是,如果人们知道自己的数据能够给自己带来收益,则可能会影响其有意识的偏离正常的行为模式,从而使得数据的真实性又产生新的问题。这一点,其实在目前互联网世界中,第三方付费的商业模式中,案例比比皆是,虚假繁荣的数据由利益而生。
不过,有激励的机制,显然整体绩效要高于没有激励的机制,这一点,我认为是大数据时代,如果向获得完整和真实的数据,所必须考虑的一点。
目前来了,大数据的出现还主要是为了提高生产力,提高营销的效果,改善我们的交通、环境、健康、城市的境况。但是随着生物科技、信息通信技术的发 展,物联网、互联网的融合发展,我们的世界或许将不可避免的进入一个“全数据化”的世界——在这样的世界,任何不可数据化的东西,都将与不存在一样。
在这样的世界,将是由大数据统治的世界,每一个人都是一串二进制编码,透明而简单,一切都是确定的,都是可预测的,都是按部就班的,你喜欢吗?反正我不喜欢,没有不确定性的人生能有多大意思呢?数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09