京公网安备 11010802034615号
经营许可证编号:京B2-20210330
让华尔街也害怕的大数据分析浪潮
在电影《魔球》里,叙述美国职棒大联盟球队经理Billy Beane运用统计数据,精准评估出球员们的价值、有效分配资源,以组成最能发挥战力团队的能力让人印象深刻;透过资讯整理、数据分析,再加上对于资讯和数据的敏锐观察,让Billy Beane能够聪明地解读出资讯背後所隐藏的意义,进而准确做出预测和分析。这段曾经真人实事发生于MLB奥克兰运动家队的故事,有可能再重现于我们的生活当中吗?答案绝对是肯定的,而且就靠着目前不容忽视的Big Data浪潮!
Big Data,也被称之为大数据、巨量资料或者海量资料。根据研究机构国际数据资讯(IDC)表示,全球资料正以每年50%的速度成长,也就是说,资料量将在不到两年的时间内便会增加一倍;其中,又有近90%的数据是近两年才出现的。由此可见,资料正如同一股洪流般地涌入了我们的生活、进而改变全球的经济模式。此外,IBM也估计,大数据所带来的商机将以20%的速度持续成长,并预计在今年达到180亿美元的水准;单以成长速度和商机而言,在《大数据》一书中作者Mayer-Schonberger所提到「Big Data将是未来十年趋势」这样的结论,可真是一点也不为过!
在云端科技的发展之下,不仅让人们能够在庞大的资料中找寻线索、获得整理过的统计趋势了解过去;透过Big Data的资讯运用,更将让人人都得以掌握大自然气象、预知选举结果,甚至成为股票市场中的预言家。

位于英国的基金公司Derwent Capital Markets,早在2012年即推出了世界上第一支运用社群网站Twitter上大众情绪来进行投资的对冲基金;透过每天超过3亿4千万则的推文分析,将用户情绪归纳出一套金融规划,以预测股票市场的趋势。当用户情绪指数趋于平和冷静时,道琼工业指数所呈现的走势是上扬的;反之,当用户情绪波动时,股价指数则明显下跌。根据数据显示,以Twitter推文预测投资市场走势的方式,约有高达87.6%的准确率;相信,很多人应该连想都没想过,自己在网站上所发布的感受和心情,竟然能够成为影响投资市场走势的因素之一吧!
对于金融业而言,令人兴奋的消息还不只这一桩。花旗银行(Citi Bank)近期也正与IBM进行风险管理方面的合作,邀请到能够在三秒内阅读并理解2亿页资料,而且能够像人类般准确回答问题的「分析师」Watson,协助银行分析每天数以千计的金融讯息,进而认知风险、报酬、客户需求并且藉此辅助诊断投资决策,以期大幅降低风险。未来,大数据不仅可以被Google应用来预测奥斯卡得奖名单、被美国总统欧巴马运用在掌握选举时的选情状况,更可朝向金融领域发展,藉由数据资料分析有效控制投资风险、提供客户更加客制化的资讯,甚至预防难以侦测的金融诈欺和洗钱交易。

分析(analytics),是从大数据中辨识出价值、让资料被赋予意义的最重要因素;在资讯爆炸的时代里,获得巨量资料的门槛已经大幅降低,但是,最後若少了分析技术以促成有意义的决策,那麽便无法在庞大资料中挖掘出具有价值的宝藏。或许有人认为,投资市场的迷人之处就在于,没有人能够完全准确地预测其走势;然而,透过大数据,却能够发现可用的讯号以有效减少风险,并藉由早一步找出影响趋势的因素,而在投资市场中先占有优势。数据是死的,就看我们如何赋予它生命了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20