京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据只是可能,而非万能?巴西世界杯的帷幕已然落下,亿万球迷或喜或悲、或惊愕或迷茫——情绪纷繁复杂却终将平复,生活与工作仍会继续向前。回顾比赛全局,也许有朋友还能记 起,本届世界杯开幕前,雅虎美国的一支团队曾预测说,巴西终将折桂夺冠。而今尘埃落定,显然,事前的预言未能成真。不过,这并不意味着相关团队的研究方法 没有价值。
雅虎的研究小组从轻博客Tumblr浩如烟海的1.889亿个博客账户的831亿篇文章中抽取出与足球相关的内容,再将焦点凝聚在今年2月至5月2730万篇与世界杯相关的粉丝评论,以“为每支队伍赋予优势值”的方式,判断出巴西队的赢面较大。
与我们这个时代最伟大的物理学家霍金教授应用“世界杯夺冠公式”来测算比赛结果不同,雅虎给出的结果由于是基于轻博客粉丝讨论,因而更多地展现了多 数观众的倾向和预期——每位球迷都有心目中的冠军球队,桑巴足球凭借强悍实力和出众的观赏性而深得人心,夺冠呼声极高。巴西队大比分惨败德国后,球迷的悲 痛也是个证明。但比赛结果不取决于亿万观众票选,而是场上十几人的表现。这一点也正如霍金教授所言:相对于量子力学来说,足球要复杂多了。
无论如何,雅虎的预测都是一种非常有益的尝试。在那些粉丝倾向足以决定结果的领域,类似的研究对于企业研究市场和消费者需求会很有帮助。
雅虎对世界杯赛结果的研判还可能引发更多思考:比如近来被炒得有点儿过热的大数据能否预测未来?一些业界同仁和分析家认为数据可以揭示规律,进而帮助人和企业预知结果;另一些研究者则认为大数据的功用有限、迷信大数据是愚蠢的。
作为在此领域有所涉猎的研发人员,我的观点介于两者之间。
大数据揭示的是关联与现象,而非规律和本质,所谓“知其然而不知其所以然”正是大数据分析结果的写照。商学院流 传很广的一个案例,卖场数据显示啤酒和纸尿裤的销售相关。经过调查发现,这是年轻父亲被妻子指派采购婴儿用品时夹带啤酒私货的一种趋同倾向。如果仅限于发 现关联,卖场也许会简单地把两种商品摆放在一起;而了解到现象背后的模式,便可以开展更有针对性的促销。
也就是说,大数据能提供宝贵的线索,但不能替代人工研究——比如深入现场去发掘消费行为链背后隐藏的逻辑。有兴趣的读者可以看看《品牌洗脑》一书,作者是资深营销人士,书中列举了很多生动却可能让人惊诧的例子:现代营销是如此无孔不入,比如,人还没出生营销就开始了,孕妇常去的卖场的背景音乐对婴儿有止啼的效果等等。
这些案例经常有研究数据支撑,虽然未必达到大数据的级别,但已经相当精密,包括用核磁共振扫描测试者的大脑。
对大数据极度乐观或悲观的人,其实都是将大数据视为传统营销模式的延伸。乐观派渴望找到一个“大杀器”,对消费者实现完美的“引诱”和控制。而悲观派则更理性一些——物极必反,过度营销会招致消费者反抗,利用大数据分析结果来强化原本已如水银泻地般无孔不入的营销,这真是好事吗?
在我看来,消费者行为实际上很难预测和控制——据传萨特在战后出版哲学巨著《存在与虚无》,出版商对这部巨著的销量并不看好,权当支持文化事业,但 销售成绩居然大大超出预期。出版商惊讶之余,发现原来战争期间金属被搜刮一空,商贩缺乏秤砣,用各种物品代替,有不知名的商贩发现该书的重量正好是一磅, 于是商贩普遍购来充当秤砣。
在这个故事中,大数据分析就无法准确预测这一应用情境。但我们可以做到,当消费者产生用书来当秤砣这样的奇思妙想,大数据可以马上向他推荐《存在与 虚无》。既然消费者很难预测和控制,不如一方面利用大数据来观察和总结特定情境下的群体行为关联,一方面更谦虚和认真地与消费者个体沟通,用审慎执着的态 度及更好的产品、服务来黏住顾客,而不是只在营销上下功夫。

总而言之,大数据虽然能在很大程度上提高预测的准确性,它也只能让产品和服务本就出色的企业变得更强,却不能拯救那些存在致命缺陷的企业于水火之中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29