京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新价值大数据解决城市大问题_数据分析师
城市化进程让人们在享受现代文明成果的同时,也带来了交通拥堵、能耗增加、空气恶化等问题。而随着大数据分析技术的发展,大数据也能运用在城市管理与环境治理之中。2014年5月,环境保护部信息中心与微软(中国)签订了谅解备忘录,双方将共同优化Urban Air(基于城市大数据计算城市大气质量的计算模型),进一步研发该模型为政府环境管理服务的功能,共同探讨并践行大数据在环保领域的业务化应用。
近日,2014全国环境信息技术与应用交流会在海口举行,围绕“十二五”环境信息化任务目标和国内外环境信息技术发展趋势,大会通过主题报告、高峰对话、专题论坛等形式,就“改革促融合,信息强环保”的主题进行广泛交流和经验分享。那么,大数据将如何在环境信息领域创新应用,该应用将对环境治理发挥怎样的作用?会上,记者采访了微软亚洲研究院主管研究员郑宇博士,为大家揭开大数据里的秘密。
微软Urban Air
气象部门已经能够对于天气的变化做到较为准确的预报,而这种对于规律的认知,现已延伸到了与人类生活同样密切的其他方面。“今天几点出门锻炼健康?”“下班后哪条道路会更拥堵?”“明天城市里哪一片区域PM2.5会比较高?”……“这些看似不可预知的事件,利用大数据都可以进行精确模拟和预测。”郑宇说。
“我不是环境专家,这些对于环境保护方面的分析全部基于对异构数据的研究。”郑宇举例说,在同一时刻、同一城市的不同地方,空气质量受到交通流量、工业排放、道路密度等因素影响差别会很大,这些因素在城市不同地方都不一样,这让我们很难精确地判断一个没有建空气质量监测站点的地方,空气质量到底如何,它不能用平均值来替代,因为是非线性的。
“怎么做呢?我们用两部分的大数据做实时的细粒度空气质量分析,第一部分是已有空气质量监测站点实时和历史观测数据。第二部分加了其他数据源,其中第一个就是气象条件,比如说刮风、下雨、风速、气压、湿度等;第二个是交通流量,比如这个区域里面车的平均速度是多少;第三个是该区域人的移动性,有多少人进出这个区域;最后是这个区域里面的兴趣点分布,比如有多少厂矿,有多少个电影院、酒吧、红绿灯等。”郑宇说,有了这样的异构数据之后我们就可以建立一个地方的数据分布,以及这个地方空气质量观测值的网络模型,最后得到一公里乘一公里范围内的细粒度。
郑宇表示,基于这样的数据分析,就可以为管理决策者们提供科学依据。“我们可以做实时城市空气质量和污染物排放预警,比如这一区域产生大量的污染,我们可以对周边的老百姓进行预警。除此外,在做交通限流管控的时候可以更加精确。因为某些区域并不是因为车辆产生的尾气排放导致的污染物,我们只需要在某个特定时间段对某个区域做单双号限行即可,没有必要做全城限行。”
郑宇说,以上的例子说得就是城市计算中异构数据的融合问题,这也是大数据的核心问题。除了常用的环境数据之外,我们需要更多其他的异构数据源,可能看上去和环境数据并不直接相关,但是能够帮助我们解决环境的问题。对此,环保部信息中心主任程春明表示赞同,他认为如何更好地融合和利用城市中的异构数据,对环境信息化工作至关重要。郑宇表示环保部信息中心对于双方的研究合作给予了大力的支持,除京津冀及周边地区,未来双方希望在全国环保重点城市推广Urban Air模型。
在2014全国环境信息技术与应用交流会上,环保部信息中心副主任徐富春作了数据科学方面的专题报告,并分享了信息中心与微软等企业在数据技术(Data Technology)方面的交流与合作,以及在城市空气主要污染物时空分布计算上的探索和实践。徐富春表示,数据科学是信息化新的发展方向,数据驱动是一种新的信息化思维模式,以环境信息化为例,我们应该运用数据驱动推动环境管理优化升级和转型,“但这还需要大家形成一个数据共识去推动这一工作,各地区、各部门需要积累或者建立数据清单和数据资源,建立起跨地区跨部门的合作平台,更好的让大数据为环境管理和决策提供服务。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03