京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据带来大机会 运营商需关注四大课题
随着网业分离的加速实施以及OTT厂商和虚拟运营商的逐渐崛起,电信运营商正逐步沦为“流量管道”,运营商的语音、短信等传统业务受到前所未有的冲击。
有专家认为,改变当前专注于粗放式的用户规模增长,寻找更加精细化的盈利新方式来服务客户,挖掘新兴业务的市场价值,以及降低IT系统建设成本和培育内部系统自生能力是运营商在发展转型阶段的重要课题。
支撑精细化运营,全面提升传统电信服务水平
据悉,目前我国的移动业务渗透率已经接近90%,依靠新增用户已经无法长期支撑运营商收入的稳步增长。虽然4G建设力度增大使得中国移动和中国联通的新增移动用户数出现正增长,但是中国电信上半年的新增移动用户数连续数月出现负增长。同时国资委向三大运营商下发通知,要求在未来三年内,连续每年降低20%的营销费用。这样使得运营商的终端补贴策略被迫进行重大调整,放缓用户增长速度。利用数据资源对存量用户进行价值深挖、提升ARPU,降低经营成本,调整收益结构,才是运营商进行用户维系、价值提升的利器。
存量用户维系的前提在于对用户群体的准确分类。以往用户细分的数据来源是业务支撑系统(Business Support System, BSS)的用户消费习惯和消费特征数据。这些数据可以支撑处于成长型或者稳定型的用户维系工作,但当用户进入到波动或者离网阶段,营销侧数据无法展示深层次的用户业务数据。在大数据挖掘技术的带动下,运营商通过整合用户访问记录、位置信息、终端信息、信令监控等网络侧数据,强化营销侧数据和网络侧数据的关联关系。数据分析部门通过构建离网用户数据模型,预判潜在离网用户,加强对VAP (Very Annoying Person)用户的预防式管理,通过主动关怀降低用户离网预期。
“在面对成长型或者稳定型的用户时,运营商同样可通过强化网络侧数据挖掘以对用户价值进行深层次刻画,根据分析结果对用户进行正确的聚类分群以寻找潜在高价值客户。对不同分类的用户制定有针对性的营销计划,为不同用户群体提供其喜爱的产品组合,以实现分客户群的精准营销。”赛迪顾问通信产业研究中心分析师杨光建议。
加快“去电信化”进程,挖掘新兴业务的市场价值
当前在互联网浪潮的冲击下,电信运营商已经认识到基础电信业务市场将持续低迷,未来业务的增长点主要由增值电信业务带来,“去电信化”的发展思路成为运营商转型调整的主要手段。但是“去电信化”并不意味着“互联网化”,运营商在基础网络上的优势意味着未来发展支柱依然是为其带来丰厚用户群体的管道。即使在网业分离的趋势背景下,运营商将继续以管道为主,依托管道中的流量信息,发展增值业务,延伸产业链条向个性化定制化发展,向信息服务领域延伸。
大数据正是迎合当今发展态势,成为加快运营商“去电信化”的利器之一。以集客用户为例,传统上的运营商集客业务大致分为三类,即基础业务、行业应用和行业解决方案。在互联网时代,集客用户的营销策略制定很大程度上取决于终端用户信息的分析程度。但由于集客用户只专注所在行业领域,缺乏宏观数据视角。因此,运营商在网络资源方面的优势可以为集客用户提供更加完善的IT解决方案。通过定制化报表分析等手段,指出用户发展现状和未来发展趋势,支撑用户进行科学决策,同时为运营商预埋商业机会,进一步推出定制化服务产品,实现精细化运营。
打破烟囱式系统架构,降低IT系统建设成本
据了解,经过多年的建设,电信运营商已经建成了完善的IT支撑系统,形成了从集团公司到各省级公司的两级支撑模式。在支撑系统发展之初,由于业务和数据量较少,运营商普遍采用烟囱式架构。目前虽然各系统之间相互独立,各自管理,但却造成了大量的“数据孤岛”,而且由于数据模型和系统入口缺乏统一规划,软硬件资源共享度低。
随着大数据的到来,系统数据共享和综合应用将成为大数据产业链的发展基础。运营商的IT支撑系统也面临向集中化、标准化和服务化的方向发展。整合BSS系统、运营支撑系统(Operation Support System, OSS)等多系统数据,构建数据分散采集、独立存储、集中应用的IT系统,实现支撑系统的集中化和数据模型的标准化,推动集约化的运维体系和端到端服务体系的建立,将有效促进网络质量和运行维护效率提升。
推动运维部门职能转变,培育内部系统自生能力
在大数据概念来临之前,运营商的经营决策通常依靠BSS系统支撑。BSS系统内的用户营账信息、计费数据等内容能为决策者提供决策分析支持。大数据的到来让运营商意识到网络侧数据将成为价值蓝海,OSS系统内的网络运行和监控数据隐含着业务质量与用户感知的真实情况。
对此,建议运维部门可通过对现有组织、流程、指标和系统多维度的优化调整,建立面向用户感知的运维综合评估体系。运维部门配合市场部门将用户业务质量监控纳入日常工作,将客户服务和市场支撑意识真正融入运维工作,支撑市场部门营销活动。如此,运维部门将从被动响应走向主动运维,从而实现运维部门从网络运营中心(Network Operation Center, NOC)向业务运营中心(Service Operation Center, SOC)的转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12