京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据解析“外滩灯光秀改址”为何传播失效_数据分析师
2014年12月31日晚,上海外滩发生了严重的踩踏事故,造成36人死亡,49人受伤。值得注意的是,2014年外滩的灯光秀活动设置,与往年相比发生了重大的变化。而中山大学传播大数据实验室和宏博知微报告通过分析发现,媒体对于这些变化的报道并未达到预期的效果,致使“灯光秀改址”之类的重要信息被很多公众疏忽,一定程度上也间接地导致悲剧的发生。
实际上,这次“灯光秀”的地址从“外滩”改为“外滩源”,而参加条件从“免费、不限制人数”变为“凭票入场,限定2000人参与”。而这条消息在2014年12月23日就通过上海媒体以“外滩跨年4D灯光秀今年停办”的形式第一次报道过,但随后的新闻报道和政务微博传播中,这条消息却未能有效抵达普通市民。
为了验证这一判断,中山大学传播大数据实验室和宏博知微报告以“外滩、灯光秀”为关键词,抓取了2014年12月23日至12月31日的媒体报道,以及新浪微博中媒体及政务微博提及“灯光秀”的新闻及消息,作出了曲线图如下:
从图一可以看出:12月23日,新民网报道“上海外滩跨年4D灯光秀今年停办”得到较多转发,25日,媒体对“外滩灯光修改址”的消息传播达到一个高峰,但也有一些不准确的信息。26、28、29日关于“灯光秀”的报道处于低谷。直到30日,媒体报道数量激增,并且可能产生误导的消息大大超过正确信息,达到高峰。31日,正确信息和可能产生误导的信息在数量上不相上下。
另一方面,为了观察微博用户对“灯光秀改址”信息的知晓情况,研究团队抓取了2014年12月23日~31日微博用户中提及的相关数据,制图如下:
从图二可以看出,23日~29日新浪微博普通用户中提及“外滩灯光秀”的并不多,而在30日,“不知晓”改址消息的用户超过“知晓”的用户数,31日,微博中提及灯光秀的用户达到高峰,而“不知晓”改址消息的用户要远远多于“知晓”的用户。
因此,可以得出结论:媒体前期关于“灯光秀改址、限制人数”的报道并没有达到良好的传播效果,而在30日,媒体中误导性的报道占了多数,即使31日媒体中纠正性的报道增加,但由于正确的消息传播得太迟,效果达成也具有一定的滞后性。
对于如何才能实现类似的公众信息的最有效的传达,此次大数据研究的负责人、中山大学传播与设计学院院长张志安认为,有三个因素非常关键。首先是要对重要的政策信息进行简化、提炼,以最明确和完整的方式来告知公众。比如“外滩灯光秀改址”是属于“告知性信息”,还有一类是有关政策倡导和建议的“说服性信息”,比如“大家不要去外滩看灯光秀”,也应该由政府来告知公众,这样的告知才是完整的。
张志安认为,信息传播的渠道也是一个需要重视的层面,“我们其实会重视主流媒体,但主流媒体覆盖的受众也比较有限,尤其是对于年轻的网民。而微博微信又难以到达不上网的群体,所以,在一个媒体融合的时代,政府需要有效地把不同渠道的媒体和媒介利用和整合起来,在发布一些重大的信息的时候,甚至需要采用群发短信这种成本较高的方式。”
对于公共信息的传播效果,还要进行分析、预判和跟踪,尤其是对受众的感知和接受度来进行分析。“现在社交媒体,尤其是微博提供了一个较好的分析工具,我们可以通过转发和评论,来了解用户是不是真的准确理解了信息的内容,以及预判他们是不是会采取相关的行动,如果‘外滩灯光秀’能提早做这些分析的话,我们就能预判信息是否成功到达用户,以及是否需要采取进一步的预警和传播措施。”张志安表示:“总的来说,信息的提炼和准备、渠道的选择和组合、以及公众接受效果的分析和感知的预判,对政府公共政策的全媒体时代的传播是非常关键的三个环节。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16