
数据分析师属于哪种岗位_数据分析师
数据分析师属于哪种岗位?数据行业从广义上讲可以分为以下几个职位:
1、数据分析师
更注意是对数据、数据指标的解读,通过对数据的分析,来解决商业问题。主要有以下几个次层次:
1)业务监控:诊断当前业务是否正常?是否存在问题?业务发展是否达到预期(KPI)?如果没有达到预期,问主要问题在哪?是什么原因引起的?
2)建立分析体系:这些数据分析师已经对业务有一定的理解,对业务也相对比较熟悉,更多帮业务方建立一套分析体系,或者更高级是做成数据产品。例如:
营销活动。分析师会告诉业务方,在活动前你应该分析哪些数据,从而制定恰当的营销计划。在营销过程中,你应该看哪些数据,从而及时做出营销活动调整。在营
销活动,应该如何进行活动效果评估。
3)行业未来发展的趋势分析:这应该是数据分析师最高级别,有的公司叫做战略分析师/商业分析师。这个层次的数据分析师站的更高,在行业、宏观的层面
进行业务分析,预测未来行业的发展,竞争对手的业务构成,帮助公司制定战略发展计划,并及时跟踪、分析市场动态,从而及时对战略进行不断优化。
主要技能要求:
数据库知识(SQL至少要熟悉)、基本的统计分析知识、EXCEL要相当熟悉,对SPSS或SAS有一定的了解,对于与网站相关的业务还可能要求掌握GA等网站分析工具,当然PPT也是必备的。
2、数据挖掘工程师
更多是通过对海量数据进行挖掘,寻找数据的存在模式、或者说规律,从而通过数据挖掘来解决具体问题。数据挖掘更多是针对某一个具体的问题,是以解决具体问 题为导向的。例如:聚类分析,通过对于会员各种人口统计学、行为数据进行分析,对会员进行分类,对不同的类型的会员建立相应的profiling,从而更 好的理解会员,知道公司会员是到底如何?高、中、低低价值的会员构成,既可以后期各种会员的运营提供指导,提高活动效率,可以指导公司的营销,例如广告的 投放策略。以及用于公司各种战略的制定。
主要技能要求:
1)数据库必须精通。很多时候,你模型的数据预处理,可能完成在数据库里完成,你用到的数据库技巧更高。
2)必须要会成熟的数据挖掘工具、数据挖掘算法,例如:SPSS/CELEMENTINE、SAS/EM等,当然如果你会一、二款开源软件,并会写一些程序代码那是最好的,大公司都喜欢用开源的软件,例如:R、WEKA。
3、数据建模师
这个职位与数据挖掘工程师还是有本质区别的。数据建模师,更多偏向于中、小数据量,而且其使用更多更多是统计学的方法,而数据挖掘中的例如:决策树、神经网络、SVM等在这里是根据不会涉及的。
当然二者有一个共同之处都是,针对很具体的问题,都是会解决某个具体问题,例如:营销反应率,你就可能历史的邮箱、短信的反应情况,来建模型进行预 测,从而提高邮件反应率,或者减少对用户来说的“垃圾”邮箱,提高用户体验。所以从掌握的技能上讲,这二者就有很大的区别,数据建模师其实很少会提到算法 这个词,更多说使用什么模型,有感觉吗?但是从实务界来看,这二个模型越来越没有明确的分工,一般来说都会二个职位的人都会去学习对方的知识,所以这二个 职位有合并的趋势,但在未来几年来,我觉得公司要招人的时候应该还是要有区别的。
新进入数据行业的同学,可以根据自己的背景背景选择相应的职位,学数据、统计学的朋友更多可以偏向于建模师,而计算机特别是写编程出现和同学,可以走数据挖掘工程师,也许适应性更好,但这不是绝对的。
数据分析师的职位级别划分
不同公司对数据分析师的职位划分骚有不同,在一些中小型企业,没有成立独立的数据中心前,数据分析的相关职位往往是在譬如市场部、运营部这些部门之下,通 常数据分析成员在2-4人不等。对于一些大型企业,有独立的数据部门的企业,其数据分析团队人员则是十到百人不等,其职位头衔有通俗的总监、经理、主管划 分,也有助理、资深、专家之类的划分。数据分析师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13