京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据智能分析:外滩踩踏事故背后
今天上海外滩踩踏事故终于发布了原因和处理建议。据报道“12·31”外滩陈毅广场拥挤踩踏事件调查报告认定的主要原因为:
(一)对新年倒计时活动变更风险未作评估:大量市民游客认为外滩风景区仍会举办新年倒计时活动,南京路商业街和黄浦江对岸的上海中心、东方明珠等举办的相关活动吸引了部分市民游客专门至此观看。对此,黄浦区政府在新年倒计时活动变更时,未对可能的人员聚集安全风险予以高度重视,没有进行评估,缺乏应有认知,导致判断失误。
(二)新年倒计时活动变更信息宣传严重不到位:新年倒计时活动变更后,主办单位应当提前向社会充分告知活动信息。但是,直至12月30日,黄浦区旅游局才对外正式发布了新年倒计时活动信息,对“外滩”与“外滩源”的区别没有特别提醒和广泛宣传,信息公告不及时、不到位、不充分。
(三)预防准备严重缺失;
(四)对监测人员流量变化情况未及时研判、预警,未发布提示信息:12月31日20时至事件发生时,外滩风景区人员流量呈上升趋势。黄浦公安分局指挥中心未严格落实上海市公安局指挥中心每半小时上报人员流量监测情况的工作要求,也未及时向黄浦区委区政府总值班室报告。黄浦公安分局对各时段人员流量快速递增的变动情况未及时采取有效措施,未报请黄浦区政府发布预警,控制事态发展。对上海市公安局多次提醒的形势研判要求,未作响应。
(五)应对处置不当:针对事发当晚持续增加的人员流量,在现场现有警力配备明显不足的情况下,黄浦公安分局只对警力部署作了部分调整,没有采取其他有效措施。
在事故处理建议中,上海市方面建议处分黄浦区区委书记和区长等若干官员。但从未来城市管理的发展角度看,引入大数据智能分析与可视化监测等前沿技术,提升智慧城市的自动化管理水平,对复杂系统的指挥控制采用更多现代化的平台与工具更是必要。
今天我拿到一份百度研究院大数据实验室的分析报告,对外滩踩踏事故发生的背景、数据作了多维度的分析与透视。我们可以看看,如果事故当时黄浦区公安局的监控室里可以有这样的实时监控数据,悲剧是否可以预警?或者,我们可以想象,如果各地政府的智慧城市系统未来可以运行这样的大数据智能分析平台,是否能避免下一次悲剧的发生。也许,有了大数据智能分析监测,我们就可以既享受灯光秀,也不会发生惨案。而建设智能科技与大数据分析平台,就是为了让生活更美好。
外滩踩踏事故背后的大数据
上海外滩踩踏事故发生已经过去了半个多月,痛定思痛,从普通民众到专家教授,纷纷通过媒体对此事发表了自己的意见,希望能找到事故的真正原因,避免悲剧再度发生。
百度研究院大数据实验室BDL(Big Data Lab),秉承“以数据说话”的理念,基于百度数据与大数据智能分析技术,尝试对当时的情况进行数据化描述,希望可以给相关人士提供一些参考。
图1标明了南京东路地铁站附近区域(左下蓝框)、外滩源附近区域(右上蓝框)、事发地陈毅广场附近区域(右下黑框)和外滩区域(右侧红框)位置在2014年12月31日事发当时的人群热力图。颜色越红表示人群越密集,越蓝表示越稀疏。下文将聚焦在三个问题上进行讨论。
图1 2014.12.31 事发时外滩区域人群热力图
一、当时的人流量大到什么程度?事发当时是否是当晚人流量最大的时候?
通过大数据分析,我们可以看到:
1)如图2所示,事发当晚,外滩区域(包含陈毅广场)确实非常拥挤,人流量已经达到了平时最高值的3倍多。
图2 2014.12.29-2015.1.2 外滩区域人流量趋势
2)如图3所示,31日当晚20:30左右,南京东路地铁站(紫线)也曾出现过一个人流高峰。而事发当时(黑色虚线),并不是陈毅广场(红线)人流量最大的时候,其两次人流量高峰出现在21点和24点。
图3 2014.12.31-2015.1.1人流量趋势图
二、当时人流的对冲到底是什么样的程度
有专家表示人流对冲可能是踩踏的很大一个原因,利用大数据技术结合地图定位信息,从历史定位与轨迹数据里可以看到事发地的人流方向相对于其他节假日确实显得更加复杂。我们用中秋节、国庆节以及跨年三个节日的数据进行比较。
(1)中秋前夜 (2)国庆当晚 (3)跨年当晚
图4 外滩和外滩源区域人群分布热力图(2小时)
通过图4的2小时人群分布热力图可以看出,三个节日当晚人流量基本相当,不过分布不同。中秋节(图4(1))和国庆(图4(2))人群主要分布在外滩观景大道和陈毅广场附近,而在跨年当天22点之后(图4(3)),人群主要分布在中山东一路、陈毅广场和外滩源附近。
(1)中秋前夜 (2)国庆当晚 (3)跨年当晚
图5 外滩和外滩源区域人群流动方向示意图(部分采样)
图5采样选取了部分人群,示意他们的运动方向。图中,每个箭头代表一名行人,箭头的颜色及指向表示其前进方向。图5(3)可以看出,跨年当晚人群从南京东路流向陈毅广场,导致在晚上21点左右,陈毅广场的人流量达到一个峰值(图3)。而之后,更多的人群开始从陈毅广场沿着中山东一路流向北部的外滩源,也就是事发当天灯光秀所在地。
(1)中秋前夜 (2)国庆当晚 (3)跨年当晚
图6 外滩区域人群流动方向分布图
我们进一步对图5中外滩区域的人流进行量化分析,得到了图6所示的人群流动方向分布图。图6中每一扇形分区代表不同的人流方向,扇区半径表示该方向人流量大小。图6(1-2)分别表示中秋和国庆当晚的情况,可以看出,人流方向比较简单和清晰,即南北向人流较多,其他方向人流较少。图6(3)显示了跨年当晚的外滩区域的人流方向。除了南北双向的人流,还有其他多个方向人流,人群流动方向分布混乱。
针对产生复杂人群流动方向的原因,有专家这样推测,中秋节、国庆节游客只是单纯的外滩游览;而在跨年当晚,很多游客是为了去观看灯光秀,但是到了陈毅广场后才发现灯光秀地点更改(往年都在陈毅广场,今年更改为外滩源)。从百度搜索关键词分析里面也看到这一趋势。当晚23:20左右,搜索“灯光秀取消了么”和“灯光秀门票”的关键词的数量急剧增加(图7)。

图7 搜索“灯光秀取消了么”和“灯光秀门票”的关键词指数
从手机地图使用习惯来看,游客去目的地前,一般都会提前利用地图搜索目的地和规划路线,灯光秀地点在外滩源,那么用户应该会搜索“外滩源”并规划路径。我们研究了当晚游客到底在什么位置通过百度地图搜索“外滩源”,发现大部分都集中在外滩附近(图8中红色区域),这从某种程度上就说明用户原本不知道灯光秀更改为外滩源,到了外滩以后才发现改了地方,所以才掏出手机进行地图搜索。
图8 以“外滩源”为目标的地图搜索发起点热力图
三、群体聚集是突发情况,可以预警吗?
我国人口众多,重大文体活动、节假日集会等活动中,容易出现因人群过度拥挤而引发的危险乃至事故。那么是否可以提前预测,做到事前预警呢?大数据实验室对百度的定位数据、搜索数据进行了深度挖掘,探索预警的可能性。

图9 外滩地图搜索与人群汇聚情况趋势图
图9代表2014年12月25日至31日,外滩地图搜索请求与人群汇聚情况的历史趋势。从两条曲线经过标准化和对齐后的走势中,我们不难看出他们基本一致的涨落趋势。平时,外滩的地图搜索和人群汇聚程度基本稳定,但在2014年的最后一天,两者都达到了最高峰。
图10 外滩地图搜索请求与人员到达数量相关性分析
通过对百度的定位数据、搜索数据进行挖掘。进一步对2014年12月31日的地图搜索请求与人员到达数量进行相关性分析。由图10得到,在百度地图中,相关地点的请求数据和实际到达该地点人群数量具有极高的相关性,相关系数超过0.9(越接近1,说明越相关)。这表明,用户去目的地前,一般都会提前利用百度地图搜索地点和规划路线。为了挖掘用户的时间提前量,包括外滩跨年时的数据,大数据实验室又对大量历史群体聚集场合的数据进行进一步的分析,包括鸟巢足球赛等。
图11 外滩地图搜索与人群数量的互相关性曲线
通过对大量历史数据分析发现,相关地点的地图搜索请求峰值会早于人群密度高峰几十分钟出现(可参见图9)。在图11中我们给出了搜索量和人群数量之间的互相关性相对于时延的变化曲线,其中X轴的值为时延量,负值即表示提前量,例如-10对上去曲线的值,就是提前10小时的搜索量与人群数量的相关性。图中可以发现,两个量的互相关性曲线在-1.5小时的时候达到了峰值,这意味着,根据地图上相关地点搜索的请求量,我们至少可能提前几十分钟预测出人流量峰值的到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03