
9.CORR 计算变量之间的相关系数, 包括皮尔逊的积矩和加权积矩相关。 10.CPORT 将一个 SAS 库,特别是 SAS 数据集或 SAS 目录转换成一个顺序文件格式,此 格式能 被传送到第6版系统上去。 11.DATASETS 对一个 SAS 库进行列表、拷贝、更名、子和删除 SAS 文件(数据集和目 录)。 12. DBF 使 SAS 数据集与 dBASEⅡ、dBASEⅢ文件互相转换。 13. DIF 使 SAS 数据集与数据交换格式(DIF)文件互相转换。 14. DOWNLOAD 实现微机与主机间的连接,并使信息从主机向微机传递。 15. FORMAT 为字符型或数值袖量定义你自己的格式。 16. FORMS 为信封、邮件等打印标签。 17. FREQ 产生1~n 维的频数表和交叉表。对于2维表,进行 χ2 检验等。 18. MEANS 为数值袖量产生简单的描述性统计量。 19. PLOT 绘制两个连续变量之间的散布图、线图等。 20. PRINT 打印 SAS 数据集中的观测。 21. PRINTTO 为 SAS 过程的输出定义一个目标, 也可改变 SAS LOG 的目标。 22. RANK 为一个 SAS 数据集中的一个或多个数值袖量计算秩。
23. SORT 按照一个或多个变量整理 SAS 数据集中的观测。 24. STANDARD 按给定的均数宏准差对 SAS 数据集中的一些或全部变量进行标准化,并 产 生一个包含标准化值的新 SAS 数据集。 25. SUMMARY 对 SAS 数据集中的数值变量计算描述性统计量,并把结果输出到一个新 SAS 数 据集中去。 26. TABULATE 从分类变量、分析变量和统计量关键词的组合构造描述性统计量的表。 27. TIMEPLOT 绘制一个或多个变量随时间变化的图。 28. TRANSPOSE 使 SAS 数据集中的观测与变量互相转换。 29. UNIVARIATE 对数值变量产生简单的描述性统计量(包括分位数)。 30. UPLOAD 实现微机与主机间的连接,并使信息从微机向主机传递。 Ⅱ.SAS/STAT 模块中的过程 1. ACECLUS 对欲进行样品聚类分析的资料进行预处理,使之更好地满足聚类分析的条 件。 2. ANOVA对来自各种试验设计的平衡资料进行方差分析。 3. CALIS 用协方差结构分析估计线性结构模型的参数,并进行检验。 4. CANCORR 实现典型相关分析、偏典型相关分析和典型冗余分析。 5. CANDISC 实现典型判别分析。 6. CATMOD 利用模型对分类资料进行分析。 7. CLUSTER 用 11 种方法对 SAS 数据集中的观测进行系统聚类分析。 8. CORRESP 实现简单的和多重的对应分析。 9. DISCRIM 对定量指标进行判别分析,并给出判别函数。 10. FACTOR 对资料进行几种类型的公因子分析和主成分分析。 11. FASTCLUS 对很大的数据集进行聚类分析,并能较好地把全部观测分为两类或三类。 12. FREQ 参见“SAS/BASE 模块中的过程”第 17 个过程。 13. GLM 用最小平方法拟合一般线性模型,可实现回归分析、方差分析、协方差分析、 多 元协方差分析和偏相关分析。 14. LIFEREG 拟合失效时间资料的参数模型。 15. LIFETEST 对生存资料进行非参数统计分析。 16. LOGISTIC 用最大似然法对二项或有序反应资料拟合线性 logistic 回归模型。 17. NESTED 对来自系统分组设计的资料进行随机效应的方差分析和协方差分析。 18. NLIN 对非线性模型的参数进行积最小平或加权最小平估计。 19. NPAR1WAY 对来自单因素设计的定量资料进行非参数统计分析和对秩进行方差分 析。 20. ORTHOREG 对病态资料进行回归分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10