京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据 战略、管理与生态_数据分析师
大数据这个话题,从西到东,从IT业内到政府官员,已经火了两年,但还没有完全一致的定义。目前业界一般认同Gartner的描述,即:凡是具有“3V”特性的数据集,就是大数据。其一为Volume,极大的数据量;其二为Variety,极复杂的数据类型与数据来源;其三为Velocity,极高的数据产生、传播,以及反应速度。
在我看来,组织决策者要跨越大数据时代的“数据鸿沟”,就需要具备大数据战略、大数据管理和大数据生态三大能力。
大数据战略:视野,观点,价值
大数据的价值已经为电商、快消、广告等多个行业的案例所证明,但挖掘出大数据的价值并不容易。我认为,企业决策者在制定大数据战略时,需要从Vision(视野)、View(观点)、Value(价值)这“新3V”入手。
第一点从视野讲,企业CEO一定要把大数据、云计算作为企业核心战略,而不能仅仅把大数据当成是企业IT管理的一个方面。要下决心投入,无论软件方面还是硬件设施。
第二是要有企业自己的观点,即收集和处理数据的策略。例如股市,大家很多时候面对同样的数据,但是对数据的处理方式是不一样的,有些人说股市下行时候投入,有些人说股市下行时候要撤出。对同样的数据,甚至同样的软件,决策方式、观点不一样,处理结果就会大大不同,这个应该成为公司决策体系的一个核心。
第三是价值,要在确定思路后,把对数据的分析,转化为能解决实际问题的执行,从而实现大数据的价值。正如马云最近所举的例子,在淘宝上比基尼卖得最好的省份是哪儿?是内蒙古和新疆,而不是人们通常会认为的海南、广东等沿海地区。大数据能帮助人们发现事物间隐藏的内在关联,但并不意味着能直接带来社会和商业价值。如果你是泳衣、防晒霜的生产商,又会制定怎样的营销策略呢?
大数据管理:简易、开放、灵活
大数据战略重要,但更重要的是如何执行,也就是大数据管理问题。也可以通过三步走的方式来解决。首先是如何获取、存储和保护数据;其二是数据丰富,即如何清洗、发现不同数据间的数据相关性;其三是数据洞察力,即通过分析、呈现与决策工具获得洞察力,并最终通过付诸行动,产生价值。
微软的大数据管理平台,有着对大数据生命周期的全方位考虑,这也是为什么我们将Hadoop等开源架构,整合到微软的大数据平台里,一方面是将Hadoop作为对非关系型数据处理的补充;另一方面是将Hadoop作为一个服务,整合到微软的公有云与私有云平台中。值得强调的是,微软不是简单地将Hadoop迁移到微软的大数据平台上,而是真正的融合,会系统地考虑其可用性、可靠性、安全性、部署的简易性与灵活性,乃至对Hadoop上工具的集成与优化。与此同时,微软也会坚持开源的原则,将在Hadoop上做的一些研发工作回馈给社区,与社区形成良性互动。
大数据生态:平台商、数据商、开发者、数据玩家
未来的大数据生态,同样会遵循最朴素的市场规则,不同角色的组织和个人,通过逐渐成熟的交换机制,各取所需——平台商提供数据交易、数据分析的场所和基本工具。
原始数据商提供自由交易的数据集;开发者提供基于数据集的应用和服务,以及定制化的分析和呈现工具;数据玩家如同股民,在市场中寻找值得投资的数据集或者机构进行投资,获得回报;现在人们炒房、炒股、炒黄金,将来或许人们会炒数据。
微软已经通过Windows Azure上的Marketplace在进行这样的尝试,目前主要针对的是商业用户,已经能将第三方解决方案提供商、服务提供商、模块提供商和最终的商业用户通过这一虚拟市场联结在一起,可以发起自由交易。在这个基础上,我们又延伸出一个数据集市,让数据集的拥有者可以把数据发布到集市上,提供很多很细致的数据集,小到电影院座位和路况,大到国家宏观经济发展数据。这就能让开发者可以通过微软的一些简单易用的API或者工具,把这些数据整合到自己的环境里,开发新的应用。
这样的大数据生态显然是健康、可持续的。对微软、亚马逊、谷歌、VMware这样的平台商而言,专心做好底层云计算基础架构和大数据服务平台;对淘宝、中国移动、政府各部委这样的数据商来说,原本只能自己用的数据,在这个模式下可以产生更多的社会和商业价值;对Salesforce、SAP、用友、金蝶等应用开发商来说,传统的、非常困难的、非常繁琐的数据整合,现在通过这样一个集市,可以首次实现把不同应用系统产生的数据整合起来,发现价值;对数据玩家来说,能够有一个朝阳式的投资平台可供选择,且不那么容易被大机构操纵。
当数据公开、数据交易和大数据应用成为自然而然的习惯时,或许我们才可以说,大数据时代真的来临了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27