京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		关于O2O的文章也已经很多了,但大多数都是在探讨关于流量、入口、销售、融资等问题,很少有人深入考虑在O2O的背后,大数据所起到的导向作用。其实大数据所具备的意义大家都基本了解,但是如何整合线上线下的数据让大数据真正完成一个O2O的闭环才是O2O模式的真正价值所在,我们在这里不妨探讨一下。
对于电商企业而言,要做O2O就要把线上的业务像线下拓展,通过实体店铺让用户真正的将体验落到实地。同时通过线下的数据反馈回线上,为线上提供更多的数据资源,完成O2O闭环。
但是在O2O模式下的数据流通说起来简单,操作起来并不容易。对于一般公司而言,线上与线下并非在一起,而是由不同的部门来运营。线上数据通常都由平台来处理,再以类似数据魔方的产品反馈给商家,在公司手中掌握的只是最基本的用户订单数据而已。
线上的订单越多,平台通过云计算分析出的数据结果也越能为商家提供参考,平台数据的可靠性也就越高。
而在线下,数据则是依靠实体店铺会员制度、销售环节、调查问卷等形式来收集。这同线上的数据就形成了完全隔离开的两个部分,线上数据与线下数据各自为战。这样就会导致O2O的两个O之间在数据层面上的脱节,很多数据的价值将无法被挖掘出来。
例如当线上的会员到线下来购买或体验产品时,线上是无法追踪到这个用户的行为的,而线下的用户到线上去选购产品时,线上则无法识别出这名用户是来自线下的,只会按照一个新会员来对待这名用户。如此一来,线上与线下的数据在用户产生跨越界限的行为时就会出现断层。
所以线上与线下的数据整合才是在O2O的模式下大数据分析真正的核心所在,如果不能整合线上与线下的数据,就不能称之为O2O模式了,在两个O之间就会产生数据断层,大数据分析的价值将大打折扣。
我们也可以这样理解,在O2O模式下,数据层面其实是不存在线上与线下的,应该成为整合的一个整体数据中心。无论用户是通过线上哪条渠道进入在线商城,微信、微博还是其他渠道,线上都会通过营销与技术结合的手段获取到用户基本数据与行为数据。
而在移动互联网领域,这一点将更加有效,因为LBS定位的存在,线上甚至可以获取到用户所在的位置信息并通过这一关键数据获取更多的价值。
对于线下,则必须与线上实现数据互通,线下的数据才能真正反馈到线上,而通过对线上采集的数据与线下数据的配比分析,才能更加有效的对实体店铺的摆货、产品陈列产生有价值的参考。
以前的线下实体店会员数据完全是孤立的,而随着O2O的出现,智能可穿戴设备的普及,线下也可以像线上一样,开展一系列的定位、洞察用户、数据分析,让线下实体店也成为流量入口。
这样一来将线上与线下系统整合,建立起企业自己的数据中心,从线上到线下,每一个节点都将产生数据。未来企业O2O之间的竞争将会成为数据分析、挖掘与应用的竞争。(来源:亿欧网 文/周磊飞 编选:中国电子商务研究中心)
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28