
大数据时代对传媒经济研究的影响(2)_数据分析师
4.研究对象
在微观经济学研究中,研究对象是个体的企业、家庭或个人,研究者通过对单个企业或个人的生产、消费等行为的分析,考察影响他们决策的各种因素。在传媒经济学研究中,媒体、受众也是作为个体存在的。这种研究有两方面缺陷,一是个体的消费行为始终处在黑箱中,我们不知道个体是如何做出消费行为决策的。二是研究只见树木不见森林,无法从对个体的研究中获知关于总体的状况,而总体状况具有极大的研究价值和应用价值。
大数据可以在这两方面做出改进,首先,借助于大数据技术,研究者可以对受众的媒介接触行为和媒介消费行为进行准确的追踪分析,掌握受众在每时每刻的媒介接触和消费行为。另外,大数据可以使研究者获知受众整体的媒介接触和消费情况,进而对受众的媒介接触和消费趋势做出预测。
5.研究主体
大数据对传媒经济研究者也提出了挑战,在大数据时代,研究者需要对大数据有深刻的理解和把握,充分认识大数据对传媒经济研究带来的深远影响,学会从大数据的研究范式出发思考问题。另外,研究者也需要掌握数据分析的方法和工具,学会利用大数据分析工具对传媒经济学的各类问题进行研究。同时,跨学科的学术合作与学术交流也变得更加重要,任何单一学科的视角和方法都难以对大数据环境下的传媒经济现象做出充分的解释。只有从传播学、经济学、社会学等多种理论视角进行跨学科考察,才能对大数据环境下的传媒经济问题做出深入的研究。
大数据时代传媒经济研究的创新
大数据对传媒经济学研究提出了相当大的挑战,在大数据环境下,传媒经济研究至少可以在以下四个方面进行创新:
1.受众行为分析
受众的媒介接触和媒介消费行为,始终是传媒经济研究的核心问题。在小数据时代,很难准确全面地了解受众的媒介接触和媒介消费行为,无论是传统的入户调查,还是受众的自我报告,都存在两方面问题:一是样本量太小,从样本中得出的结论不具有推广性;二是受众在接受调查时经常会给出有偏向的答案,由于第三者效应的存在,受众总会有美化自身行为的可能性。这使得对受众媒介接触和媒介消费行为的研究变得非常困难。
大数据技术能够对受众的媒介接触和媒介消费行为进行实时分析,比如受众在网络上点击了哪些页面、停留了多长时间、链接到哪些网站、购买了什么商品、发表了怎样的评论等信息都可以被后台服务器保留,通过分析受众的个人接触信息,可以准确把握受众媒介接触行为的特点和模式,进而对受众进行有针对性的营销。
2.市场趋势预测
大数据技术可以对市场趋势做出准确预测,舍恩伯格认为,大数据的核心就是预测,它是把数学算法运用到海量数据上来预测事情发生的可能性。一个著名的例子是Farecast票价预测工具,这个工具通过对近十万亿条机票价格数据进行分析,预测美国国内航班机票价格,其预测的精准程度达到75%,每位使用该系统的消费者每张机票可节约50美元。
3.广告及营销精准度研究
在小数据时代,广告投放呈现出撒胡椒面式的粗放形态,广告的投资回报率很低,商品的营销手段也较为粗糙,难以对受众进行一对一的精准营销。大数据环境下,通过对每位消费者的消费习惯和消费模式数据进行统计分析,可以进行精准的广告投放和商品营销,提高广告和营销的精准度。
比如,亚马逊运用数据挖掘技术,通过分析用户的浏览、收藏、购买、评论及其他用户的反馈等数据,预测每位消费者可能感兴趣的内容,将其推荐给消费者。亚马逊提出,在最理想的情况下,亚马逊只会推荐一本书,而这本书就是消费者将要购买的那本书。
4.盈利模式创新研究
大数据环境下,媒体的盈利模式也需要做出调整。在读者量不断下滑、广告市场被新兴媒体分流的现实背景下,传统的二次售卖模式难以为继。传统媒体必须创新盈利模式,利用大数据技术带来的机会,整合数据资源,寻找新的盈利增长点,实现自身的逆转。传媒盈利模式的创新也是传媒经济研究的重要问题之一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28