京公网安备 11010802034615号
经营许可证编号:京B2-20210330
畅谈大数据:小微商户也能成为大力神_数据分析师
根据IDC和EMC发布的报告,到2020年地球上每个人的数据容储量将达到5TB。这令人感到恐怖的数据量,使得很多人一谈到大数据就会产生一种无力感。如同坐拥了一座巨大无比的金山,却每天只能用手慢慢地挖,慢慢地开采,像愚公移山一般,每天24小时不停歇,也不过开采这金山的九牛一毛。
最近在美国观看YOUTUBE视频时候弹出最多的广告是一家叫做Square的移动支付公司。Square公司推出的移动读卡器能够在配合智能手机与移动网络的情况下进行刷卡消费。这种突破了时间与空间局限的支付产品,大大地降低了刷卡消费支付的技术门槛和硬件需求,使得小微商户支持刷卡消费变成了现实。 广告中一位顾客在美发完成以后,愉快地掏出信用卡,在插有Square移动读卡器的ipad上付账。店长满面笑容。而中国公司迅速的跟进使得这种笑容从美国一直绽开到了中国。拉卡拉考拉手机支付从外观到功能与Square都极其相似。
试想一下,有一天你到菜市场买菜,掏钱的时候,蔬菜摊的王大姐从凳子上拿起正在充电的手机,面带微笑地对你说,“老妹/老弟你可以用信用卡付钱的。”或是你下班经过地铁站,想要在路边摊买一碗麻辣烫吃吃,付钱的时候,推车的小伙子掏出手机对你说,“大哥/美女你可以用信用卡付钱的。”这样的一个覆盖面,根据The long tail(长尾理论),在中国这么庞大的市场所创造的资金流是非常可怕的。而移动支付所带来的利益远不止这庞大的资金链,实际上,大量的支付信息所提供给公司的是大量宝贵的数据。当有一天,我们能够监控每一个用户的每一个小微的消费行为,那么我们对于大数据的收集将会进入另一个层次。本质上来讲,这些每日琐碎的小微消费正是组成我们每天生活的主体,而分析通过这些小微消费所得到的大数据,恰能给我们带来最精准的消费行为预测。
我第一次接触Square是在我本科学校宾州州立大学附近的一家叫Uncle Chan(陈叔叔)的中餐店。陈叔叔的外卖包括自取均是使用Square连接ipad进行刷卡支付。我从小就是素食主义者,每次点餐都要到店里面专门跟他们嘱咐一下。因为美国中餐馆的素菜种类十分稀少,我养成了一个几乎每家中餐厅都只吃同一道菜的习惯。一来二去,这家中餐店的老板一见到我就自动帮我下一个麻婆豆腐配炒饭和汽水的单。这种行为经常出现在我们的生活当中,但凡我们常去的服务场所,不论是餐馆、理发店还是烟酒店,都会不自觉地记录我们的行为,从而对我们进行消费行为的判断。实际上,这种现象正是大数据分析的最基本表现形式。假设一家公司能够同时拥有我所有的消费行为数据,相当于我每天去的每一家店的老板都是同一个人,那么这家公司自然能够轻松地预测出我日常的消费行为。而如果每天你刚要下地铁的时候,一家路边麻辣烫对你的手机进行广告投放,这种广告投放的力度和效果是巨大的。随着至尊宝、手机pos、阳城、拉卡拉等公司的推广,这种数据的收集是可能的。
移动支付在中国的特色功能给我们带来了更大的数据量。手机充值、游戏充值、公益捐款、彩票购买,无数独特的功能给大数据的收集提供了便利。如同通过分析特殊材料的消耗量,能够判断出战斗机产量一样,我们通过分析用户手机充费的频率及金额,也能够得到一些非常有用的信息。
中国这个庞大的国家,能够给我提供巨大无比的数据量。
大数据从开始出现时的以TB为单位,现在已经驶入了以EB为单位的时代。根据IDC和EMC发布的报告,到2020年地球上每个人的数据容储量将达到5TB。这令人感到恐怖的数据量,使得很多人一谈到大数据就会产生一种无力感。如同坐拥了一座巨大无比的金山,却每天只能用手慢慢地挖,慢慢地开采,如同愚公移山一般,每天24小时不停歇,也不过开采这金山的九牛一毛。我在做营销项目的过程中接触过一些美国的大数据分析公司。这些分析公司都在谈他们能够为特定的企业提供什么样的一种服务。可这些已知的、能够被提供的服务所利用上的大数据,可能只是这个金山上长的那些树而已,远非金子本身。未来科技能够做到的,是分析每个用户的每个细微的行为。心跳、呼吸、眨眼次数、血压、说话的音量、说话的速度,一切的一切都能够被收集。传说中的须弥山,由金、银、琉璃、玻瓈四宝构成,高110万千米。由这些大数据所构成的金山,恐怕比须弥山只大不小。这无量无边的数据所组成的金山,凭借我们现有的分析和处理能力,和愚公移山无二无别。
那么,面对这无量无边的大数据,我们如何应对?在我看来,正如同故事里的愚公,无论他怎样努力,大山终究无法被动摇。但是天帝派来的夸娥氏的儿子们,轻松就将大山抬走。用来分析数据的电脑,不论怎样更新换代,不论拥有再高的运算速度,终究只是工具。如同给猴子一个算盘,不论它怎么挥舞都始终偏离正确的使用方式。我们已经拥有了超越我们驾驭能力的工具,也拥有了超越我们驾驭范围的金山。那么下一步,就是要我们自己从愚公,转变成大力神的儿子。
我在上一篇文章里提到过大数据的未来,就是用大数据来探究宇宙人生的规律。在探究这个真相的过程中,唯有提升我们的认知,提升我们的境界,提高我们的智慧,才有可能从大数据中提炼出真理。唯有透过大数据的现象,看到商业规律的本质,才能够驾驭大数据并有的放矢。从前,布鲁诺支持日心说,挑战了教会的地心说,虽然超前地更接近于真相,却难逃被烧死的命运。若我们不去提高自己的认知,不去提升自己的境界,不去提高自己的智慧,我们也必将被湮没在这无量无边的大数据之中。即便坐拥着金山,也不知如何去挖掘。我们依然贫穷。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20