
数据挖掘成果固化_聚类分析_数据分析师
--聚类样本数据模拟
--BY:@ETwise
--输入表1:cluster_sample
--输入表2:cluster_center
--20141213
create table cluster_sample
(
serv_id NUMBER ,
label_1 number,
label_2 number,
label_3 number,
label_4 number
);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (1,2,3,4,5);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (2,2.5,4.2,4.2,5.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (3,3.2,4.1,2.3,5.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (4,1.1,1.2,2.2,3.2);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (5,1.7,1.75,1.35,4.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (6,1.5,1.2,0.62,3.38);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (7,1.3,0.65,-0.11,3);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (8,1.1,0.1,-0.84,2.62);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (9,0.9,-0.45,-1.57,2.24);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (11,0.5,-1.55,-3.03,1.48);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (12,0.3,-2.1,-3.76,1.1);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (13,0.1,-2.65,-4.49,0.72);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (14,-0.1,-3.2,-5.22,0.34);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (15,-0.3,-3.75,-5.95,-0.04);
INSERT INTO cluster_sample (serv_id,label_1,label_2,label_3,label_4) VALUES (16,-0.5,-4.3,-6.68,-0.42);
--创建聚类分析所得到的中心点数据
create table cluster_center
(
row_1 number,
row_2 number,
row_3 number,
row_4 number,
type_id VARCHAR2(20) not null
);
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (0,0,0,0,'t1');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (1,1,1,1,'t2');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (2,2,2,2,'t3');
INSERT INTO cluster_center (row_1,row_2,row_3,row_4,type_id) VALUES (3,3,3,3,'t4');
--聚类分析成果系统固化相关说明(K-means)
--第一步:对计算每个点与各个中心点的距离,并对应得到相应的分类type_id
select serv_id,
sqrt(power((label_1 - row_1), 2) + power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) + power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b
;
--第二步:使用开窗函数对各serv_id的各个中心点的距离进行升序排序,并打上相应的编号
select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b)
;
--第三步:提取各个serv_id的最小距离数据,即可得到各个serv_id的类别
select *
from (select serv_id,
os,
row_number() over(partition by serv_id order by os asc) myrow_1,
type_id
from (select serv_id,
sqrt(power((label_1 - row_1), 2) +
power((label_2 - row_2), 2) +
power((label_3 - row_3), 2) +
power((label_4 - row_4), 2)) OS,
type_id
from cluster_sample a, cluster_center b))
where myrow_1 = 1
;
--其他办法:一步到位,直接代入中心点进行计算
select serv_id,
case
when least(os1, os2, os3, os4) = os1 then
't1'
when least(os1, os2, os3, os4) = os2 then
't2'
when least(os1, os2, os3, os4) = os3 then
't3'
when least(os1, os2, os3, os4) = os4 then
't4'
else
'-1'
end type_id
from (select serv_id,
sqrt(power((label_1 - 0), 2) + power((label_2 - 0), 2) +
power((label_3 - 0), 2) + power((label_4 - 0), 2)) os1,
sqrt(power((label_1 - 1), 2) + power((label_2 - 1), 2) +
power((label_3 - 1), 2) + power((label_4 - 1), 2)) os2,
sqrt(power((label_1 - 2), 2) + power((label_2 - 2), 2) +
power((label_3 - 2), 2) + power((label_4 - 2), 2)) os3,
sqrt(power((label_1 - 3), 2) + power((label_2 - 3), 2) +
power((label_3 - 3), 2) + power((label_4 - 3), 2)) os4
from cluster_sample t)
;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27