京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网站数据分析:那些难以实现的细分_数据分析师
如果你从事网站分析相关工作,那么你一定用过或听说过网站分析工具中的细分(Segment)功能。不得不说,用好Segment是一名合格的网站分析师必备的技能。关于Segment的重要性,恐怕无需我多言了,借用Sidney的一句话——“无细分,毋宁死!”
However,这次想跟大家分享的,是那些我认为难以实现的细分。这里需要强调下,只是“我认为”,并未向任何官方证实我的这些想法,因此请大家尽管质疑,尽管拍砖。
在用具体的案例来说明问题之前,先简单回顾下细分是如何工作的,下面引用一段Omniture官方文档中的内容,
Segmentation works by scanning through every single hit within the time period selected, checking to see if that image request matches your segmentation rules.
1. If it matches, then that hit will be part of your segment (along with additional data depending on the bucket)
2. If it does not match, the image request is thrown away and treated as if it didn’t exist in the context of the specific report you are viewing
这里要注意下,虽然平时如果你说“把Search Engine按Keyword细分”,大家都明白你的意思,但实际上,很可能潜移默化地就把多维度关联和细分两者的概念混淆了。
好了,废话不多说,直接进入正题。
在同一个会话(Session)中,用户可能对Page A产生了X个Page View(s),那么,是否可以通过细分,得到可以满足下表的数据?
| Page Views of Page A | Visits |
| 0(未查看过Page A的访问) | |
| 1(查看过Page A 1次的访问) | |
| 2(查看过Page A 2次的访问) | |
| … | |
| X(查看过Page A X次的访问) |
我们先尝试第一项,0 Page Views of Page A(未查看过Page A的访问),
很容易地,我们给出了细分规则,即在所有的数据中筛选出排除了访问中访问过Page A的访问(似乎稍有拗口,在用文字表达细分规则的时候我总感觉很吃力,语言难以规范,请见谅了)。也就是说,如果某次访问中包含了Page = Page A的hit,那么,这次访问将不在细分后的数据集中。
事实上,得到这个数据如果不通过细分来实现,也是非常容易,用Total Visits – Visits of Page A,得到的结果便是完全没有访问过Page A的Visits了。
细分后,我们来看看Page A的数据情况,顺便验证下细分是否正确,
(图片已经PS处理,数据为模拟数据)
如上图所示,细分后得到的Total Visits 是9,310,750,而未细分的话,得到的Total Visits是10,041,929,两者之差正好是未细分时Page A的Visits 731,179,因此,细分成功。
顺便提一下,不要试图用下面的规则来得到这个数据,也不要试图把Visit Container修改成Page View Container,想一想为什么吧,我就先不多说了。
接着,我们继续尝试第二项任务,即细分出“看且仅看了Page A 1次的访问”。
我们可能试图用以下规则来实现,
乍一看,还真像那么回事,我们先直接看看结果如何,
(图片已经PS处理,数据为模拟数据)
有没有发现,我们所期望的“看且仅看了Page A 1次的访问”,其结果竟然与Page A Single Page Visits(访问且仅访问了Page A的访问数量)相同,这说明我们的规则:Page Views equals 1,作用于整个visit,限定了符合规则的访问必须仅包含1个Page View,而并非如我们所愿,用于限定Page A的Page Views为1 。
到这里,我想实验可以结束了,之后的任务也同样无法完成了。由于近两年较少使用GA,因此我并不确定GA中是否可以实现这样的细分,但是对于Omniture,我有至少99%的Confidence说这个细分是无法实现的(经过针对性的部署的除外)。
还没完,来试试总结出一个更具普遍性的结论:我们可以细分出某个特定变量发生过特定次数的访问/访客,但无法细分出某个特定变量的某个特定值发生过特定次数的访问/访客。
用这个结论来解释这个案例的话,那就是我们可以细分出Page变量发生过X次(Page Views = X)的访问,但无法细分出Page变量的值为A且发生过X次Page=A的访问。
这个案例就到这里结束了,如果你有任何不同意见,请尽管拍砖,我虽然很坚信这个细分确实无法实现,但我更希望我的想法是错误的。文章来源:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16