
大数据带来大机会运营商需关注四大课题
随着网业分离的加速实施以及OTT厂商和虚拟运营商的逐渐崛起,电信运营商正逐步沦为“流量管道”,运营商的语音、短信等传统业务受到前所未有的冲击。
有专家认为,改变当前专注于粗放式的用户规模增长,寻找更加精细化的盈利新方式来服务客户,挖掘新兴业务的市场价值,以及降低IT系统建设成本和培育内部系统自生能力是运营商在发展转型阶段的重要课题。
支撑精细化运营,全面提升传统电信服务水平
据悉,目前我国的移动业务渗透率已经接近90%,依靠新增用户已经无法长期支撑运营商收入的稳步增长。虽然4G建设力度增大使得中国移动和中国联通的新增移动用户数出现正增长,但是中国电信上半年的新增移动用户数连续数月出现负增长。同时国资委向三大运营商下发通知,要求在未来三年内,连续每年降低20%的营销费用。这样使得运营商的终端补贴策略被迫进行重大调整,放缓用户增长速度。利用数据资源对存量用户进行价值深挖、提升ARPU,降低经营成本,调整收益结构,才是运营商进行用户维系、价值提升的利器。
存量用户维系的前提在于对用户群体的准确分类。以往用户细分的数据来源是业务支撑系统(Business Support System, BSS)的用户消费习惯和消费特征数据。这些数据可以支撑处于成长型或者稳定型的用户维系工作,但当用户进入到波动或者离网阶段,营销侧数据无法展示深层次的用户业务数据。在大数据挖掘技术的带动下,运营商通过整合用户访问记录、位置信息、终端信息、信令监控等网络侧数据,强化营销侧数据和网络侧数据的关联关系。数据分析部门通过构建离网用户数据模型,预判潜在离网用户,加强对VAP (Very Annoying Person)用户的预防式管理,通过主动关怀降低用户离网预期。
“在面对成长型或者稳定型的用户时,运营商同样可通过强化网络侧数据挖掘以对用户价值进行深层次刻画,根据分析结果对用户进行正确的聚类分群以寻找潜在高价值客户。对不同分类的用户制定有针对性的营销计划,为不同用户群体提供其喜爱的产品组合,以实现分客户群的精准营销。”赛迪顾问通信产业研究中心分析师杨光建议。
加快“去电信化”进程,挖掘新兴业务的市场价值
当前在互联网浪潮的冲击下,电信运营商已经认识到基础电信业务市场将持续低迷,未来业务的增长点主要由增值电信业务带来,“去电信化”的发展思路成为运营商转型调整的主要手段。但是“去电信化”并不意味着“互联网化”,运营商在基础网络上的优势意味着未来发展支柱依然是为其带来丰厚用户群体的管道。即使在网业分离的趋势背景下,运营商将继续以管道为主,依托管道中的流量信息,发展增值业务,延伸产业链条向个性化定制化发展,向信息服务领域延伸。
大数据正是迎合当今发展态势,成为加快运营商“去电信化”的利器之一。以集客用户为例,传统上的运营商集客业务大致分为三类,即基础业务、行业应用和行业解决方案。在互联网时代,集客用户的营销策略制定很大程度上取决于终端用户信息的分析程度。但由于集客用户只专注所在行业领域,缺乏宏观数据视角。因此,运营商在网络资源方面的优势可以为集客用户提供更加完善的IT解决方案。通过定制化报表分析等手段,指出用户发展现状和未来发展趋势,支撑用户进行科学决策,同时为运营商预埋商业机会,进一步推出定制化服务产品,实现精细化运营。
打破烟囱式系统架构,降低IT系统建设成本
据了解,经过多年的建设,电信运营商已经建成了完善的IT支撑系统,形成了从集团公司到各省级公司的两级支撑模式。在支撑系统发展之初,由于业务和数据量较少,运营商普遍采用烟囱式架构。目前虽然各系统之间相互独立,各自管理,但却造成了大量的“数据孤岛”,而且由于数据模型和系统入口缺乏统一规划,软硬件资源共享度低。
随着大数据的到来,系统数据共享和综合应用将成为大数据产业链的发展基础。运营商的IT支撑系统也面临向集中化、标准化和服务化的方向发展。整合BSS系统、运营支撑系统(Operation Support System, OSS)等多系统数据,构建数据分散采集、独立存储、集中应用的IT系统,实现支撑系统的集中化和数据模型的标准化,推动集约化的运维体系和端到端服务体系的建立,将有效促进网络质量和运行维护效率提升。
推动运维部门职能转变,培育内部系统自生能力
在大数据概念来临之前,运营商的经营决策通常依靠BSS系统支撑。BSS系统内的用户营账信息、计费数据等内容能为决策者提供决策分析支持。大数据的到来让运营商意识到网络侧数据将成为价值蓝海,OSS系统内的网络运行和监控数据隐含着业务质量与用户感知的真实情况。
对此,建议运维部门可通过对现有组织、流程、指标和系统多维度的优化调整,建立面向用户感知的运维综合评估体系。运维部门配合市场部门将用户业务质量监控纳入日常工作,将客户服务和市场支撑意识真正融入运维工作,支撑市场部门营销活动。如此,运维部门将从被动响应走向主动运维,从而实现运维部门从网络运营中心(Network Operation Center, NOC)向业务运营中心(Service Operation Center, SOC)的转型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27