京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网和大数据带来前所未有的新价值
计算变革 万物智能
在这场计算变革中,我观测到几大领域的蓬勃发展势头。首先是数据中心。无论是今天的移动器件,还是将来的物联网以及可穿戴技术的应用,都会带来信息指数性的增长。谈及此点,可以做个简单回顾,在过去的几十年当中,晶体管集成的指数性增长,使得集成电路行业产生了爆发型增长,英特尔和众多半导体公司受益其中,摩尔定律也得以很好地体现和延续。我们相信,在未来几十年,这个原子集成和比特的爆发增长将导致物联网、可穿戴产业的普及,创造出万物智能的新商机,是史无前例的商业机会。所以基于高计算性能的数据中心是英特尔会继续稳健推进的领域之一。
第二是个人终端和移动设备。从1998年PC互联网应用到2008年移动互联网兴起,最明显的变革当属硬件形态的变化。业内人士预测,到2018年一个物联网天地将呈现出来。对此,英特尔将会延续在PC时代的发展理念,即围绕用户体验进行基于终端设备的软硬件创新,并在未来加大这方面的投资。
工业物联网和以可穿戴设备为代表的消费物联网,两者都蕴含着巨大商机——在过去一年之内,大家不难看到全球各大公司,无论是互联网还是硬件企业,对这个领域的关注热度也急剧增长。借助超过30年的嵌入式计算积累、全面的端到端解决方案以及软硬协同优势,英特尔也在这一领域积极布局,与产业伙伴一道探索最佳的技术创新和商业模式。
物联网不仅是硬件的世界,也不只是互联网的世界,而是基于硬件与互联网的结合并通过数据分析而呈现的世界。如今摩尔定律已经能够使计算能力被嵌入到万物当中,从而产生庞大的数据量,创造了大数据时代,但也带来了新的挑战。所以,大数据分析和价值挖掘就与物联网相生相伴,与企业产能效率和盈利也直接相关。从独立、零散的单点设备到现在万物互联的巨大变化,物联网的商业模式、行业发展都将非常复杂,比技术创新更有挑战,需要信息技术和运营模式的融合创新。
四大产业 促进升级
第一是制造业。就中国国情来讲,制造业是与国民经济增长最为密切相关的一个行业,我们的关注点主要聚焦在系统整合,既涉及到负载整合,保障数据的安全可信,也关注通过优化工厂配置来提高生产能力和效率。其实,无论在工业、制造还是能源领域,物联网的部署、应用在很大程度上都是围绕效率展开的。我曾在晶元和封装测试工厂工作过,早在多年以前,英特尔就已成功将“物联网”技术应用于工厂。当时我们在全球有几十个工厂,通过数据互联,能够以更快的速度发现问题,进行工艺调整,大幅节省成本和提高合格率。
第二是交通运输业。从七年以前英特尔开始关注车载娱乐系统,并将无人驾驶作为发展愿景,这是因为无人驾驶需要很多的计算和视频技术,需要传统制造和IT技术的整合,而这正是英特尔的优势所在。同时,英特尔还着眼于交通运输效率的提升,助力物流的优化和整个交通服务平台的整合,进而在一定程度上减少环境污染。
第三是零售业。零售业智能化除了能够用到硬件之外,还关注个性化购物体验和需求响应的提高,比如门店怎么布局、如何应用IT技术满足业务增长和客户需求。我们的零售与数字标牌业务部门虽然只有5年历史,现在整个架构方面已经是全球领先。无论是信息亭、零售亭、自动售货机、咖啡机还是智能白板,都可以被赋予更加鲜活的生命。
最后是智能家居和楼宇。在中国,智能家居是一个热门产业,业务涵盖了家庭娱乐、健康、安全与自动化等细分市场,还涉及到能源和公用事业等领域。这些无不体现着英特尔对人们美好生活、对社会可持续发展的关注。
此外,我们积极关注视觉计算在包括安防、交通、零售、智能家居、智慧城市等诸多领域的应用。所谓“百闻不如一见”,视觉计算是帮助嵌入式系统实现智能化、真正连至物联网的重要手段之一,它使机器具备了相当于人类视觉的能力,同时也使人类在机器的协助下看得更清楚、分析得更准确。当然,视觉计算远非安装几个摄像头那么简单。除了捕获数据,还要从中充分挖掘新知,在此基础上开发更多应用。以交通为例,我们通过将摄像设备中车流的数据和空气质量传感器中的数据进行相关性分析,就可以通过调整信号灯的时间,优化车辆在路口等待的时间,减少排放和污染。
系统整合 发挥生态圈力量
系统整合、让现有设备更加智能是大势所趋,物联网和大数据也正在带来前所未有的新价值,英特尔将继续发挥从设备到云端完善而领先的智能互联技术,并携手不断壮大的产业伙伴和创客、开发者群体,以物联网创新推动行业变革,以万物互联帮助人们创造丰富多彩的生活和更加美好未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09