京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据都是骗人的_数据分析师
人类不知道的,远远比知道的更有意义大数据能不能预测黑天鹅?还是等失联的飞机找到再说吧
黑天鹅事件与大数据时代,可算是现下流行的两个高冷词汇。
其实黑天鹅并不是什么新词。据说,17世纪的欧洲人认为所有的天鹅都是白色的,因为他们从来没有见过其他颜色的天鹅,当然,我到现在也没见过其他颜色的 天鹅。到了18世纪初,欧洲人远渡重洋来到澳洲,一上岸就惊奇地发现,居然有的天鹅是黑色的!欧洲人吓尿了,因为他们之前那么坚信自己的判断。可残酷的事 实让欧洲人的信念土崩瓦解,他们跑回老家奔走相告:妈妈,原来世界上也有黑天鹅啊史称黑天鹅事件。
黑天鹅的出现预示着,世界 上永远存在不可预测的重大和罕见事件,意料之外,一旦出现却有可能改变一切。人类总是过于相信自己的经验,希望自己的判断、决定和计划能如期而至,但是现 实总是让我们手足无措。无论是泰坦尼克号的沉没、第二次世界大战、911袭击、美国的次贷危机、互联网浪潮等等,都不是人为能够预测出来的,但这些事件 的发生,对人类历史发展的进程产生了重大的影响。
甚至普通人日常生活中的选择,也存在很多黑天鹅现象。我有两个朋友,一个坚韧不拔,对公 司不抛弃不放弃,十几年过去了,一路从程序员成长为技术副总裁,然后公司因为一个突如其来的财务丑闻倒闭了;另一个朋友总是在选择中跳槽,在跳槽中选择, 最后在一家公司工作了两年后,公司上市了,这家伙还去纳斯达克敲了钟!大家可以感受一下,然后静下心来想一想,你所生活过的这十几年,或几十年,哪些日子 是在计划中度过的?
当然,很多人会说我们现在有了大数据相关的技术,我们的信息浩如烟海,如果说过去的数据用筐装就够了,现在得用列车和 舰艇运输,我们用千百万台连接到一起的计算机对这些数据进行计算、加工和统计,难道还预测不出一两只黑天鹅来吗?在自然界的物种领域,当世的科技和讯息的 传播几乎已经不会再犯17世纪欧洲人的错误了。但是,黑天鹅事件,依然难以预测。
讲一个寓言故事吧。有一头不在风口的猪,自打出世以 来就在猪圈这样一个世外桃源生活,每天会来一些站立行走的生物,时不时扔一些好吃的进来,小猪觉得日子惬意极了。它高兴了就去泥里打滚,忧伤了就趴在猪圈 的护栏上看夕阳西下,春去秋来,岁月不争。经过数百天的大数据分析,小猪觉得日子会一直这样过下去,直到他从小猪长成了肥猪在春节前的一个下午,一次 血腥的杀戮改变了猪的信念:尼玛大数据都是骗人的啊惨叫戛然而止。
无论是你的个人收入、知名度,还是你的Google 搜索量、血压、牙患、股票价格都有可能是黑天鹅事件,它们在过去的几百天之内只发生了微小的变化,并且具备一定的趋势,你以为事情会一直这样发展下去 了,就像太阳每天从东边升起、西边坠落一样自然,但是到了1001天的时候,砰的一声,一个过去从未有过的巨大变化发生了!比如,前些天康师傅就被立 案调查了。
人类不知道的远远比知道的更有意义。历史永远不是线性发展,每一次跳跃前行中都有黑天鹅的身影。这或许才是黑天鹅要告诉我们的真相。
那么普通人如何面对黑天鹅现象呢?如果我说他强任他强,清风抚山冈;他横由他横,明月照大江,大家会不会点赞呢?料想是不会的,所以我的看法是:
1. 保持独立的人格和思考,持续提升个人能力。在改变历史进程的黑天鹅事件中,个人的作用可能微乎其微,但是在生活中就有用了。比如你早晨起了床,刷了 牙,吃了早饭,为自己的梨形身材套上合身的西装并扎好领带,高高兴兴去上班,然后发现自己失业了。没关系,哥一身是胆满腹经纶左右手都能编程,分分钟找到 下家并薪资翻倍。
2.努力让自己的生活发生正面的黑天鹅事件,寻找报酬具有突破性的职业和工作,工作成果不受时间限制,也不是按件记酬。比如我,现在就寄希望成为图书销售百万的技术作家神马的
3.通过反证接近真相。当所有人都认为某件事的发生是理所当然的,不要急着附和,往其他方向看一看想一想,不是有句老话吗,我不能证明这件事是正确的,但我可以证明它是错误的。不是说不能过马路,而是说不要闭着眼睛过马路。
等等,说了半天,大数据是干吗的?就目前数据计算能力,大数据主要应用于经营决策、智能推荐、定向营销、机器学习和人工智能等方面,至于预测黑天鹅事件,还是等失联的飞机找到再说吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06